9) Constant acceleration

9.1) Displacement-time graphs
9.2) Velocity-time graphs
9.3) Constant acceleration formulae 1
9.4) Constant acceleration formulae 2
9.5) Vertical motion under gravity

Your turn

Describe the motion of each object from the displacement-time graph:

Describe the motion of each object from the displacement-time graph:

Object is accelerating

Worked example

Your turn

A cyclist rides in a straight line for 30 minutes. She waits for a quarter of an hour, then returns in a straight line to her starting point in 25 minutes.
a) Work out the average velocity for each stage of the journey in $\mathrm{km} \mathrm{h}^{-1}$.
b) Write down the average velocity for the whole journey.
c) Work out average speed for the whole jo

A cyclist rides in a straight line for 20 minutes. She waits for half an hour, then returns in a straight line to her starting point in 15 minutes.
a) Work out the average velocity for each stage of the journey in $\mathrm{km} \mathrm{h}^{-1}$.
b) Write down the average velocity for the whole journey.
c) Work out average speed for the whole $s(k m)$

a) $\mathrm{OA}: 15 \mathrm{~km} \mathrm{~h}^{-1}$; $\mathrm{AB}: 0 \mathrm{~km} \mathrm{~h}{ }^{-1}$; $\mathrm{BC}: 20 \mathrm{~km} \mathrm{~h}{ }^{-1}$
b) 0
c) $9.23 \mathrm{~km} \mathrm{~h}^{-1}(3 \mathrm{sf})$

9.2) Velocity-time graphs

Your turn

Describe the motion of each object from the velocity-time graph:

Describe the motion of each object from the velocity-time graph:

Object has constant acceleration. Velocity is increasing at a constant rate.

Your turn

A cyclist is moving along a straight road for a period of 21 seconds. For the first 6 seconds, she moves at a constant speed of $8 \mathrm{~ms}^{-1}$. She then decelerates at a constant rate, stopping after a further 15 seconds.
(a) Find the displacement from the starting point of the cyclist after this 21 second period.
(b) Work out the rate at which the cyclist decelerates.

A cyclist is moving along a straight road for a period of 12 seconds. For the first 8 seconds, she moves at a constant speed of $6 \mathrm{~m} \mathrm{~s}^{-1}$. She then decelerates at a constant rate, stopping after a further 4 seconds.
(a) Find the displacement from the starting point of the cyclist after this 12 second period.
(b) Work out the rate at which the cyclist decelerates.

a) 60 m
b) $1.5 \mathrm{~ms}^{-2}$

Worked example

Your turn

A particle moves along a straight line. The particle accelerates uniformly from rest to a velocity of $16 \mathrm{~ms}^{-1}$ in T seconds. The particle then travels at a constant velocity of $16 \mathrm{~ms}^{-1}$ for $3 T$ seconds. The particle then decelerates uniformly to rest in a further 4 s .
(a) Sketch a velocity-time graph to illustrate the motion of the particle.
Give then the total displacement of the particle is 592 m .
(b) find the value of T.

A particle moves along a straight line. The particle accelerates uniformly from rest to a velocity of $8 \mathrm{~ms}^{-1}$ in T seconds. The particle then travels at a constant velocity of $8 \mathrm{~ms}^{-1}$ for $5 T$ seconds. The particle then decelerates uniformly to rest in a further 40 s .
(a) Sketch a velocity-time graph to illustrate the motion of the particle.
Give then the total displacement of the particle is 600 m .
(b) find the value of T.
a) $v\left(m s^{-1}\right)$

b) $T=10$

Worked example

Your turn

A car is travelling along a straight horizontal road. The car takes $120 s$ to travel between two sets of traffic lights which are 2145 m apart. The car starts from rest at the first set of traffic lights and moves with constant acceleration for $30 s$ until its speed is $22 \mathrm{~m} \mathrm{~s}^{-1}$. The car maintains this speed for T seconds. The car then moves with constant deceleration, coming to rest at the second set of traffic lights.
a) Sketch a speed-time graph for the motion of the car between the two sets of traffic lights
b) Find the value of T
a)

b) $T=75$

Worked example

Your turn

A car is travelling along a straight horizontal road. The car takes $120 s$ to travel between two sets of traffic lights which are 2145 m apart. The car starts from rest at the first set of traffic lights and moves with constant acceleration for $30 s$ until its speed is $22 \mathrm{~m} \mathrm{~s}^{-1}$. The car maintains this speed for T seconds. The car then moves with constant deceleration, coming to rest at the second set of traffic lights.
a) Sketch a speed-time graph for the motion of the car between the two sets of traffic lights
b) Find the value of T
a)

b) $T=75$

Worked example

Your turn

A car is travelling along a straight horizontal road. The car takes $60 s$ to travel between two sets of traffic lights which are 1072.5 m apart. The car starts from rest at the first set of traffic lights and moves with constant acceleration for $15 s$ until its speed is $11 \mathrm{~m} \mathrm{~s}^{-1}$. The car maintains this speed for T seconds. The car then moves with constant deceleration, coming to rest at the second set of traffic lights.
A motorcycle leaves the first set of traffic lights 15 s after the car has left the first set of traffic lights. The motorcycle moves from rest with constant acceleration, and passes the car at the point A which is 495 m from the first set of traffic lights. When the motorcycle passes the car, the car is moving with speed $11 \mathrm{~ms}^{-1}$
c) Find the time it takes for the motorcycle to move from the first set of traffic lights to the point A

A car is travelling along a straight horizontal road. The car takes $120 s$ to travel between two sets of traffic lights which are 2145 m apart. The car starts from rest at the first set of traffic lights and moves with constant acceleration for $30 s$ until its speed is $22 \mathrm{~m} \mathrm{~s}^{-1}$. The car maintains this speed for T seconds. The car then moves with constant deceleration, coming to rest at the second set of traffic lights.

A motorcycle leaves the first set of traffic lights 10 s after the car has left the first set of traffic lights. The motorcycle moves from rest with constant acceleration, and passes the car at the point A which is 990 m from the first set of traffic lights. When the motorcycle passes the car, the car is moving with speed $22 \mathrm{~ms}^{-1}$
c) Find the time it takes for the motorcycle to move from the first set of traffic lights to the point A
c) 50 seconds

Worked example

Your turn

A car is moving along a straight horizontal road. At time $t=0$, the car is moving with speed $10 \mathrm{~ms}^{-1}$ and is at the point A. The car maintains this speed for 50 s . The car then moves with constant deceleration $0.6 \mathrm{~ms}^{-2}$, reducing its speed from $10 \mathrm{~ms}^{-1}$ to $4 \mathrm{~ms}^{-1}$.
The car then moves with constant speed $4 \mathrm{~ms}^{-1}$ for 30 s . The car then moves with constant acceleration until it is moving with speed $10 \mathrm{~ms}^{-1}$ at the point B.
Given that the distance from A to B is $980 m$, find the time taken for the car to move from A to B

A car is moving along a straight horizontal road.
At time $t=0$, the car is moving with speed $20 \mathrm{~ms}^{-1}$ and is at the point A. The car maintains this speed for 25 s .
The car then moves with constant deceleration $0.4 \mathrm{~ms}^{-2}$, reducing its speed from $20 \mathrm{~ms}^{-1}$ to $8 \mathrm{~ms}^{-1}$.
The car then moves with constant speed $8 \mathrm{~ms}^{-1}$ for 60 s . The car then moves with constant acceleration until it is moving with speed $20 \mathrm{~ms}^{-1}$ at the point B.
Given that the distance from A to B is $1960 m$, find the time taken for the car to move from A to B

155 seconds

9.3) Constant acceleration formulae 1 Chapter CONTENTS

Worked example

Your turn

A cyclist is travelling along a straight road. She accelerates at a constant rate from a velocity of $5 \mathrm{~ms}^{-1}$ to a velocity of $7.4 \mathrm{~ms}^{-1}$ in 50 seconds. Find:
(a) the distance she travels in these 50 seconds (b) her acceleration in these 50 seconds.

A cyclist is travelling along a straight road.
She accelerates at a constant rate from a velocity of $4 \mathrm{~ms}^{-1}$ to a velocity of $7.5 \mathrm{~ms}^{-1}$ in 40 seconds. Find:
(a) the distance she travels in these 40 seconds
(b) her acceleration in these 40 seconds.
a) 230 m
b) $0.0875 \mathrm{~ms}^{-2}$

Your turn

A particle moves in a straight line from a point A to a point B with a constant deceleration $3 \mathrm{~ms}^{-2}$. The velocity of the particle at A is $16 \mathrm{~ms}^{-1}$ and the velocity of the particle at B is $4 \mathrm{~ms}^{-1}$. Find:
(a) the time taken for the particle to move from A to B.
(b) the distance from A to B.

After reaching B the particle continues to move along the straight line with constant deceleration $3 \mathrm{~ms}^{-2}$. The particle is at the point $C 12$ seconds after passing through the point A. Find:
(c) the velocity of the particle at C.
(d) The distance from A to C.

A particle moves in a straight line from a point A to a point B with a constant deceleration $1.5 \mathrm{~ms}^{-2}$. The velocity of the particle at A is $8 \mathrm{~ms}^{-1}$ and the velocity of the particle at B is $2 \mathrm{~ms}^{-1}$. Find:
(a) the time taken for the particle to move from A to B.
(b) the distance from A to B.

After reaching B the particle continues to move along the straight line with constant deceleration $1.5 \mathrm{~ms}^{-2}$.
The particle is at the point $C 6$ seconds after passing through the point A. Find:
(c) the velocity of the particle at C.
(d) The distance from A to C.
a) 4 s
b) 20 m
c) $1 \mathrm{~ms}^{-1}$ in the direction $\overrightarrow{B A}$
d) 21 m

Worked example

Your turn

A car moves from traffic lights along a straight road with constant acceleration.
The car starts from rest at the traffic lights and 20 seconds later the car passes a speed-trap where it is registered as travelling at $54 \mathrm{~km} \mathrm{~h}^{-1}$. Find:
(a) the acceleration of the car
(b) the distance between the traffic lights and the speedtrap.

A car moves from traffic lights along a straight road with constant acceleration.
The car starts from rest at the traffic lights and 30 seconds later the car passes a speed-trap where it is registered as travelling at $45 \mathrm{~km} \mathrm{~h}^{-1}$. Find:
(a) the acceleration of the car
(b) the distance between the traffic lights and the speedtrap.
a) $\frac{5}{12} \mathrm{~ms}^{-2}=0.417 \mathrm{~ms}^{-2}(3 \mathrm{sf})$
b) 187.5 m
9.4) Constant acceleration formulae 2 Chapter CONTENTS

Your turn

Use the equations $v=u+a t$ and $s=\left(\frac{u+v}{2}\right) t$ to derive:
$v^{2}=u^{2}+2 a s$

$$
s=v t-\frac{1}{2} a t^{2}
$$

Use the equations $v=u+a t$ and $s=\left(\frac{u+v}{2}\right) t$ to derive:
$s=u t+\frac{1}{2} a t^{2}$
Shown

Your turn

A particle is moving along a straight line from A to B with constant acceleration $3 \mathrm{~ms}^{-2}$. The velocity of the particle is $5 \mathrm{~ms}^{-1}$ in the direction $\overrightarrow{A B}$.
The velocity of the particle at B is $81 \mathrm{~ms}^{-1}$ in the same direction. Find the distance from A to B.

A particle is moving along a straight line from A to B with constant acceleration $5 \mathrm{~ms}^{-2}$. The velocity of the particle is $3 \mathrm{~ms}^{-1}$ in the direction $\overrightarrow{A B}$.
The velocity of the particle at B is $18 \mathrm{~ms}^{-1}$ in the same direction.
Find the distance from A to B.
31.5 m

Worked example

Your turn

A particle is moving in a straight horizontal line with constant deceleration $6 \mathrm{~ms}^{-2}$. At time $t=0$ the particle passes through a point O with speed $23 \mathrm{~ms}^{-1}$ travelling towards a point A, where $O A=40 \mathrm{~m}$. Find:
(a) the times when the particle passes through A
(b) the value of t when the particle returns to O.

A particle is moving in a straight horizontal line with constant deceleration $4 \mathrm{~ms}^{-2}$.
At time $t=0$ the particle passes through a point O with speed $13 \mathrm{~ms}^{-1}$ travelling towards a point A, where $O A=20 \mathrm{~m}$. Find:
(a) the times when the particle passes through A
(b) the value of t when the particle returns to O.
a) $t=2.5 \mathrm{~s}, t=4 \mathrm{~s}$
b) $t=6.5 \mathrm{~s}$

Worked example

Your turn

A particle is moving in a straight horizontal line with constant deceleration $6 \mathrm{~ms}^{-2}$. At time $t=0$ the particle passes through a point O with speed $23 \mathrm{~ms}^{-1}$.
Find the total distance travelled by the particle between when it first passes O and returns to O

A particle is moving in a straight horizontal line with constant deceleration $4 \mathrm{~ms}^{-2}$.
At time $t=0$ the particle passes through a point O with speed $13 \mathrm{~ms}^{-1}$.
Find the total distance travelled by the particle
between when it first passes O and returns to O

Worked example

Your turn

Two particles P and Q are moving along the same straight horizontal line with constant accelerations 2 and $4 \mathrm{~ms}^{-2}$ respectively. At time $t=0, P$ passes through a point A with speed $12 \mathrm{~ms}^{-1}$. One second later Q passes through A with speed $6 \mathrm{~ms}^{-1}$, moving in the same direction as P.
a) Find the value of t where the particles meet.
b) Find the distance of A from the point where the particles meet.

Two particles P and Q are moving along the same straight horizontal line with constant accelerations 6 and $8 \mathrm{~ms}^{-2}$ respectively. At time $t=0, P$ passes through a point A with speed $10 \mathrm{~ms}^{-1}$. One second later Q passes through A with speed $5 \mathrm{~ms}^{-1}$, moving in the same direction as P.
a) Find the value of t where the particles meet.
b) Find the distance of A from the point where the particles meet.
a) $t=13.1 \mathrm{~s}(3 \mathrm{sf})$
b) $644 \mathrm{~m}(3 \mathrm{sf})$

Your turn

A particle moves in a straight horizontal line with constant acceleration from A to B, then B to C. $\mathrm{AB}=3 \mathrm{~km}$ and $\mathrm{BC}=12 \mathrm{~km}$.
It takes 2 hour from A to B and 4 hours from B to C.

Find:
a) The acceleration of the particle
b) The particle's speed as it passes A

A particle moves in a straight horizontal line with constant acceleration from A to B, then B to C. $\mathrm{AB}=4 \mathrm{~km}$ and $\mathrm{BC}=12 \mathrm{~km}$.
It takes 2 hours from A to B and 3 hours from B to C.

Find:
a) The acceleration of the particle
b) The particle's speed as it passes A
a) $0.8 \mathrm{~km} \mathrm{~h}^{-2}=6.1728 \times 10^{-5} \mathrm{~ms}^{-2}(3 \mathrm{sf})$
b) $1.2 \mathrm{~km} \mathrm{~h}^{-1}=0.333 \mathrm{~ms}^{-1}(3 \mathrm{sf})$

9.5) Vertical motion under gravity

Worked example

Your turn

A book falls off the top shelf of a bookcase. The shelf is 2.8 m above a wooden floor. Find:
(a) the time the book takes to reach the floor,
(b) the speed with which the book strikes the floor.

A book falls off the top shelf of a bookcase.
The shelf is 1.4 m above a wooden floor. Find:
(a) the time the book takes to reach the floor,
(b) the speed with which the book strikes the floor.
a) 0.53 s
b) $5.2 \mathrm{~ms}^{-1}$

Your turn

A ball is projected vertically upwards, from a point X which is 5 m above the ground, with speed $15 \mathrm{~ms}^{-}$ ${ }^{1}$. Find
(a) the greatest height above the ground reached by the ball,
(b) the time of flight of the ball

A ball is projected vertically upwards, from a point X which is 7 m above the ground, with speed $21 \mathrm{~ms}^{-}$
${ }^{1}$. Find
(a) the greatest height above the ground reached by the ball,
(b) the time of flight of the ball
a) $30 \mathrm{~m}(2 \mathrm{sf})$
b) $4.6 \mathrm{~s}(2 \mathrm{sf})$

Worked example

Your turn

A ball is projected vertically upwards from ground level at a speed of $40 \mathrm{~ms}^{-1}$.
Determine the amount of time the ball is at least 20m above ground level.

A ball is projected vertically upwards from ground level at a speed of $20 \mathrm{~ms}^{-1}$.
Determine the amount of time the ball is at least 10m above ground level.

$$
2.9 \mathrm{~s}(2 \mathrm{sf})
$$

Worked example

Your turn

A ball is projected vertically upwards with initial speed of $20 \mathrm{~ms}^{-1}$.
It hits the ground $5 s$ later.
Find the height above the ground from which the ball was thrown.

A ball is projected vertically upwards with initial speed of $15 \mathrm{~ms}^{-1}$.
It hits the ground $5 s$ later.
Find the height above the ground from which the ball was thrown.
47.5 m

Your turn

A stone is thrown vertically upward from a point which is 8 m above the ground with speed $5 \mathrm{~ms}^{-1}$. Find:
a) The time of flight of the stone
b) The total distance travelled by the stone

A stone is thrown vertically upward from a point which is 5 m above the ground with speed $8 \mathrm{~ms}^{-1}$. Find:
a) The time of flight of the stone
b) The total distance travelled by the stone
a) $2.1 \mathrm{~s}(2 \mathrm{sf})$
b) 12 m (2 sf)

Your turn

Ball A falls vertically from rest from the top of a tower 48 m high. At the same time as A begins to fall, another ball B is projected vertically upwards from the bottom of the tower with speed $24 \mathrm{~ms}^{-1}$. The balls collide. Find the distance to the point where the balls collide from the bottom of the tower.

Ball A falls vertically from rest from the top of a tower $63 m$ high. At the same time as A begins to fall, another ball B is projected vertically upwards from the bottom of the tower with speed $21 \mathrm{~ms}^{-1}$. The balls collide. Find the distance to the point where the balls collide from the bottom of the tower.

19 m (2 sf)

Your turn

At time $t=0$, two balls A and B are projected vertically upwards. Ball A is projected upwards with speed $3 \mathrm{~ms}^{-1}$ from a point 40 m above the horizontal ground. Ball B is projected vertically upwards from the ground with speed $30 \mathrm{~ms}^{-1}$. The balls are modelled as particles moving freely under gravity. Find the time and the height at which the balls are at the same vertical height.

At time $t=0$, two balls A and B are projected vertically upwards. Ball A is projected upwards with speed $2 \mathrm{~ms}^{-1}$ from a point 50 m above the horizontal ground. Ball B is projected vertically upwards from the ground with speed $20 \mathrm{~ms}^{-1}$. The balls are modelled as particles moving freely under gravity. Find the time and the height at which the balls are at the same vertical height.

$$
\begin{aligned}
t & =2.8 s(2 \mathrm{sf}) \\
h & =18 m(2 \mathrm{sf})
\end{aligned}
$$

Worked example

Your turn

A ball is released from rest at a point which is 20 m above a wooden floor. Each time the ball strikes the floor, it rebounds with $\frac{2}{3}$ of the speed with which it strikes the floor.
Find the greatest height above the floor reached by the ball:
a) The first time it rebounds from the floor
b) The second time it rebounds from the floor.

A ball is released from rest at a point which is 10 m above a wooden floor. Each time the ball strikes the floor, it rebounds with $\frac{3}{4}$ of the speed with which it strikes the floor.
Find the greatest height above the floor reached by the ball:
a) The first time it rebounds from the floor
b) The second time it rebounds from the floor.
a) $5.6 \mathrm{~m}(2 \mathrm{sf})$
b) $3.2 \mathrm{~m}(2 \mathrm{sf})$

