9) Differentiation

9.1) Differentiating $\sin x$ and $\cos x$ Chapter CONTENTS

Worked example

Prove, from first principles, that the derivative of sin x is cos x. You may assume that as $h \to 0$, $\frac{\sin h}{h} \to 1$ and $\frac{\cos h - 1}{h} \to 0$

Your turn

Prove, from first principles, that the derivative of sin x is cos x. You may assume that as $h \to 0$, $\frac{\sin h}{h} \to 1$ and $\frac{\cos h - 1}{h} \to 0$

Let
$$f(x) = \sin x$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sin(x) \cos(h) + \cos(x) \sin(h) - \sin(x)}{h}$$

$$= \lim_{h \to 0} \left(\left(\frac{\cos h - 1}{h} \right) \sin x + \left(\frac{\sin h}{h} \right) \cos x \right)$$

$$= \lim_{h \to 0} ((0) \sin x + (1) \cos x)$$

$$= \cos x$$

Worked example	Your turn
Find: $\frac{d}{dx}(\sin 5x)$	Find: $\frac{d}{dx}(\sin\frac{1}{2}x)$ $\frac{1}{2}\cos 2x$
$\frac{d}{dx}(\cos\frac{1}{2}x)$	$\frac{d}{dx}(\cos 5x)$ $-5\sin 5x$
$\frac{d}{dx}(6\sin 7x - 4\cos 3x)$	$\frac{d}{dx}(7\sin 6x - 3\cos 4x)$ $\frac{42\cos 6x + 12\sin 4x}{42\cos 6x + 12\sin 4x}$

Worked example	Your turn
A curve has equation $y = \frac{1}{4}x - \cos 3x$. Find the stationary points on the curve in the interval $0 \le x \le \pi$	A curve has equation $y = \frac{1}{2}x - \cos 2x$. Find the stationary points on the curve in the interval $0 \le x \le \pi$ (1.70, 1.82) and (3.02, 0.539) (3 sf)

Worked example	Your turn
A curve has equation $y = \sin 5x + 3x$. Find the stationary points on the curve in the interval $0 \le x \le \frac{3}{5}\pi$	A curve has equation $y = \sin 3x + 2x$. Find the stationary points on the curve in the interval $0 \le x \le \frac{2}{3}\pi$ (0.767, 2.279) and (1.328, 1.910) (3 sf)

Worked example	Your turn
A curve has equation $y = \sin 4x - \cos 3x$. Find the equation of the tangent to the curve at the point $(\pi, 1)$	A curve has equation $y = \sin 4x + \cos 3x$. Find the equation of the tangent to the curve at the point $(\pi, -1)$
	$y = 4x - 4\pi - 1$

Worked example	Your turn
A curve has equation $y = 3x^2 - \sin x$. Show that the equation of the normal to the curve at the point with <i>x</i> -coordinate π is $x + (6\pi + 1)y - \pi(18\pi^2 - 3\pi - 1) = 0$	A curve has equation $y = 3x^2 + \sin x$. Show that the equation of the normal to the curve at the point with <i>x</i> -coordinate π is $x + (6\pi - 1)y - \pi(18\pi^2 - 3\pi + 1) = 0$ Shown

9.2) Differentiating exponentials and logarithms Chapter CONTENTS

Worked example	Your turn
Prove that the derivative of a^{kx} is $a^{kx}k \ln a$	Prove that the derivative of a^x is $a^x \ln a$
	Proof

Worked example	Your turn
Find: $\frac{d}{dx}(5e^{2x})$	Find: $\frac{d}{dx}(2e^{\frac{1}{4}x})$
	$\frac{1}{2}e^{\frac{1}{4}x}$
$\frac{d}{dx}(4e^{\frac{1}{3}x})$	
$\frac{d}{dx}(3e^{-0.5x})$	

Worked example	Your turn
Find: $\frac{d}{dx}(2^x)$	Find: $\frac{d}{dx}(5^x)$
	5 ^{<i>x</i>} ln 5
$\frac{d}{dx}(3^x)$	
$\frac{d}{dx}(4^x)$	

Worked example	Your turn
Find: $\frac{d}{dx}(5(2^x))$	Find: $\frac{d}{dx}(2(5^x))$
	5 ^x 2 ln 5
$\frac{d}{dx}(4(3^x))$	
$\frac{d}{dx}(3(4^x))$	

Worked example	Your turn
Find: $\frac{d}{dx}(2^{5x})$	Find: $\frac{d}{dx}(5^{2x})$
	5 ^{2x} 2 ln 5
$\frac{d}{dx}(3^{4x})$	
$\frac{d}{dx}(4^{3x})$	

Worked example	Your turn
Find: $\frac{d}{dx}(3^x)$	Find: $\frac{d}{dx}(5^x)$
	5 ^x ln 5
$\frac{d}{dx}(x^3)$	$\frac{d}{dx}(x^5)$ $5x^4$

Worked example	Your turn
Find: $\frac{d}{dx}(\ln 2x)$	Find: $\frac{d}{dx}(\ln 5x)$
	$\frac{1}{x}$
$\frac{d}{dx}(\ln 3x)$	
$\frac{d}{dx}(\ln 4x)$	

Worked example	Your turn
Find: $\frac{d}{dx}(2\ln x)$	Find: $\frac{d}{dx}(5\ln x)$
	$\frac{5}{x}$
$\frac{d}{dx}(3\ln x)$	
$\frac{d}{dx}(4\ln x)$	

Worked example	Your turn
Find: $\frac{d}{dx}(\ln x^2)$	Find: $\frac{d}{dx}(\ln x^5)$
	$\frac{5}{x}$
$\frac{d}{dx}(\ln x^3)$	
$\frac{d}{dx}(\ln x^4)$	

Worked example	Your turn
Find: $\frac{d}{dx} \left(\frac{3 + 2e^{5x}}{7e^{4x}} \right)$	Find: $\frac{d}{dx} \left(\frac{2 - 3e^{7x}}{4e^{3x}} \right)$
	$-\frac{3}{2}e^{-3x}-3e^{4x}$
$\frac{d}{dx} \left(\frac{7 - 5e^{-4x}}{3e^{2x}} \right)$	

Worked example	Your turn
Find: $\frac{d}{dx}(e^x - 3)^2$	Find: $\frac{d}{dx}(e^x + 5)^2$
	$2e^{2x} + 10e^{x}$

Worked example	Your turn
The population P of a species after t days can be modelled using $P = 640(2^{-3t})$	The population P of a species after t days can be modelled using $P = 460(3^{-2t})$
 a) Determine how many days have elapsed before there are 20 individuals left b) Determine the rate of change of the population after 3 days. 	 a) Determine how many days have elapsed before there are 20 individuals left b) Determine the rate of change of the population after 3 days. a) 1.43 days b) -1.39 individuals/day

Worked example	Your turn
A curve has the equation $y = e^{4x} - \ln x$	A curve has the equation $y = e^{3x} - \ln x$
Show that the equation of the tangent to the curve at the point with <i>x</i> -coordinate 1 is: $y = (4e^4 - 1)x - 3e^4 + 1$	Show that the equation of the tangent to the curve at the point with <i>x</i> -coordinate 1 is: $y = (3e^3 - 1)x - 2e^3 + 1$
	Shown

Worked example	Your turn
A curve has the equation	A curve has the equation
$y = 5(2^{3x})$	$y = 4(3^{2x})$
Find the equation of the normal to the curve at the point	Find the equation of the normal to the curve at the point
with x-coordinate 1 in the form $y = ax + b$, where a and b	with x-coordinate 1 in the form $y = ax + b$, where a and b
are constants to be found in exact form	are constants to be found in exact form

$$y = -\frac{1}{72 \ln 3} x + \frac{1}{72 \ln 3} + 36$$
$$a = -\frac{1}{72 \ln 3}$$
$$b = \frac{1}{72 \ln 3} + 36$$

9.3) The chain rule

Chapter CONTENTS

Worked example	Your turn
Differentiate with respect to <i>x</i> : $y = (4x^3 - x)^7$	Differentiate with respect to x: $y = (3x^4 + x)^5$
	$\frac{dy}{dx} = 5(3x^4 + x)^4(12x^3 + 1)$
$f(x) = (7x^2 - 3x)^4$	

Worked example	Your turn
Differentiate with respect to x : $y = (\ln x)^3$	Differentiate with respect to x: $y = (\ln x)^5$ $\frac{dy}{dx} = \frac{5(\ln x)^4}{x}$
$f(x) = (\ln x)^4$	

Worked example	Your turn
Differentiate with respect to <i>x</i> : $y = e^{x^2 + x}$	Differentiate with respect to x: $y = e^{x^4 - 3x^2 - 1}$ $\frac{dy}{dx} = (4x^3 - 6x)e^{x^4 - 3x^2 - 1}$
$f(x) = e^{x^3 - 2x + 1}$	

Worked example	Your turn
Differentiate with respect to x: $y = (3^x + 1)^2$	Differentiate with respect to x: $y = (4^x - 2x)^3$
	$\frac{dy}{dx} = 3(4^x - 2x)^2(4^x \ln 4 - 2)$
$f(x) = (2^x - 3x)^4$	

Worked example	Your turn
Differentiate with respect to x : $y = \ln(\sin x)$	Differentiate with respect to x: $y = \ln(\cos x)$
	$\frac{dy}{dx} = \tan x$

Worked example	Your turn
Differentiate with respect to x: $y = \ln(x^2 - 3x + 4)$	Differentiate with respect to x: $y = \ln(x^4 - 5x^2 - 3)$
$f(x) = \ln(x^3 - 2x - 5)$	$\frac{dy}{dx} = \frac{4x^3 - 10x}{x^4 - 5x^2 - 3}$

Worked example	Your turn
Differentiate with respect to x : $y = \sin 5x$	Differentiate with respect to x: $y = \cos 3x$ $\frac{dy}{dx} = -3 \sin 3x$
$f(x) = \cos(-4x)$	

Worked example	Your turn
Differentiate with respect to x : $y = \sin^4 x$	Differentiate with respect to x : $y = \sin^2 x$
	$\frac{dy}{dx} = 2\sin x \cos x = \sin 2x$
$f(x) = \cos^3 x$	

Worked example	Your turn
Differentiate with respect to x : $y = \sin^4 3x$	Differentiate with respect to x : $y = \sin^2 3x$
	$\frac{dy}{dx} = 6\sin 3x \cos 3x = 3\sin 6x$
$f(x) = \cos^3 2x$	

Worked example	Your turn
Differentiate with respect to x:	Differentiate with respect to x:
$y = \sqrt{2x - 1}$	$y = \sqrt[4]{2x^3 + 1}$
	$\frac{dy}{dx} = \frac{1}{4}(2x^3 + 1)^{-\frac{3}{4}}(6x^2)$
$f(x) = \sqrt[3]{4x^2 + 5}$	

Worked example	Your turn
Differentiate with respect to x : $y = e^{e^{-x}}$	Differentiate with respect to x : $y = e^{e^x}$
	$\frac{dy}{dx} = e^x (e^{e^x})$

Worked example	Your turn
Given that $y = \sqrt{2x^5 - 2}$, find $\frac{dy}{dx}$ at (3,22)	Given that $y = \sqrt{5x^2 + 1}$, find $\frac{dy}{dx}$ at (4,9)
	20
	9
Worked example	Your turn
--	---
Find the gradient of: $x = (1 + 2y)^3$ when $y = 1$	Find the gradient of: $x = (2y^3 - 3)^5$ at (-1,1)
	30
$x = (3y^2 - 2)^4$ at $(1, -1)$	

Worked example	Your turn
Find $\frac{dy}{dx}$ when: $x = 2y^2 + y$	Find $\frac{dy}{dx}$ when: $x = 4y^3 - y + 2$ $\frac{1}{12y^2 - 1}$
$x = 3y^4 - y^2 - 1$	

Worked example	Your turn
A curve C has equation	A curve C has equation
3 2	4 3
$y = \overline{(2-5x)^4}$, $x \neq \overline{5}$	$y = \frac{1}{(3 - 2x)^5}, x \neq \frac{1}{2}$
Find an equation for the normal to C at the	Find an equation for the normal to <i>C</i> at the
point with x-coordinate 1 in the form $ax + ax + ax + ax$	point with x-coordinate 2 in the form $ax +$
by + c = 0, where a, b and c are integers	by + c = 0, where a, b and c are integers

$$x + 40y + 158 = 0$$

9.4) The product rule

Chapter CONTENTS

Worked example	Your turn
Differentiate with respect to x : $y = x^2 e^{3x}$	Differentiate with respect to x: $y = x^3 e^{2x}$
	$\frac{dy}{dx} = x^2 e^{2x} (2x+3)$
$f(x) = x^5 e^{2x}$	

Worked example	Your turn
Differentiate with respect to x : $y = x^2 \ln 3x$	Differentiate with respect to x: $y = x^3 \ln 2x$
	$\frac{dy}{dx} = x^2(1+3\ln 2x)$
$f(x) = x^4 \ln 5x$	

Worked example	Your turn
Differentiate with respect to x: $y = 2x^3(4x - 5)^6$	Differentiate with respect to x: $y = 3x^2(6x - 5)^4$
	$\frac{dy}{dx} = 6x(6x - 5)^3(18x - 5)$
$f(x) = 6x^5(4x - 3)^2$	

Worked example	Your turn
Differentiate with respect to x : $y = x^3 \sin x$	Differentiate with respect to x : $y = x^2 \sin x$
	$\frac{dy}{dx} = x(x\cos x + 2\sin x)$
$f(x) = x^4 \cos x$	

Worked example	Your turn
Differentiate with respect to x: $y = e^{3x} \sin^4 2x$	Differentiate with respect to x: $y = e^{4x} \sin^2 3x$
	$\frac{dy}{dx} = e^{4x} \sin 3x \left(6 \cos 3x + 4 \sin 3x\right)$
$f(x) = e^{2x} \cos^3 4x$	

Worked example	Your turn
Determine the coordinates of the turning point: $y = xe^{3x}$	Determine the coordinates of the turning point: $y = xe^{2x}$ $\left(-\frac{1}{2}, -\frac{1}{2e}\right)$
$f(x) = xe^{4x}$	

Worked example	Your turn
Worked example Differentiate with respect to <i>x</i> : $y = x^2 \sqrt{5x - 2}$	Your turn Differentiate with respect to x: $y = x^{2}\sqrt{3x - 1}$ $\frac{dy}{dx} = \frac{x(15x - 4)}{2\sqrt{3x - 1}}$

Worked example	Your turn
Find the equation of the tangent to the curve with equation $y = x^2 \sin(x^2)$ at the point $\left(\frac{\sqrt{\pi}}{2}, \frac{\pi\sqrt{2}}{8}\right)$ in the form $ax + by + c = 0$ where a, b and c are exact constants.	Find the equation of the tangent to the curve with equation $y = x^2 \cos(x^2)$ at the point $\left(\frac{\sqrt{\pi}}{2}, \frac{\pi\sqrt{2}}{8}\right)$ in the form $ax + by + c = 0$ where a, b and c are exact constants. $\sqrt{2\pi}(\pi - 4)x + 8y - \pi\sqrt{2}\left(\frac{\pi - 2}{2}\right) = 0$
	$\begin{pmatrix} 2 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$

Worked example	Your turn
Differentiate with respect to x:	Differentiate with respect to x:
$\frac{dy}{dx} = \frac{1}{5x(x+1)^{\frac{1}{2}}}$	$\frac{dy}{dx} = \frac{1}{6x(x-1)^{\frac{1}{2}}}$ $\frac{d^2y}{dx^2} = \frac{2-3x}{12x^2(x-1)^{\frac{3}{2}}}$

9.5) The quotient rule

Chapter CONTENTS

Worked example	Your turn
Differentiate with respect to <i>x</i> : $y = \frac{3x}{5x - 2}$	Differentiate with respect to x: $y = \frac{x}{2x + 5}$
	$\frac{dy}{dx} = \frac{5}{(2x+5)^2}$

Worked example	Your turn
Differentiate with respect to <i>x</i> : $y = \frac{x^2}{\ln 5x}$	Differentiate with respect to x: $y = \frac{x^3}{\ln 3x}$
$y = \frac{\ln 4x}{x^4}$	$\frac{dy}{dx} = \frac{x^2(3\ln 3x - 1)}{(\ln 3x)^2}$

Worked example	Your turn
Differentiate with respect to x: $y = \frac{\cos 3x}{x^4}$	Differentiate with respect to x: $y = \frac{\sin 4x}{x^3}$
	$\frac{dy}{dx} = \frac{4x\cos 4x - 3\sin 4x}{x^4}$
$f(x) = \frac{x^4}{\cos 3x}$	

Worked example	Your turn
Find the stationary point of	Find the stationary point of
$y = \frac{\cos x}{e^{3x}}$, $0 < x < \pi$	$y = \frac{\sin x}{e^{2x}}$, $0 < x < \pi$
	(0.464, 0.177) (3 dp)

Worked example	Your turn
Find the equation of the tangent to the	Find the equation of the tangent to the
curve $y = \frac{e^{\frac{1}{4}x}}{x}$ at the point $(4, \frac{1}{4}e)$	curve $y = \frac{e^{\frac{1}{2}x}}{x}$ at the point $(2, \frac{1}{2}e)$
	$y = \frac{1}{2}e$

9.6) Differentiating trigonometric functions Chapter CONTENTS

Worked example	Your turn
Differentiate with respect to x : $y = \cot x$	Differentiate with respect to x : $y = \tan x$
	$\frac{dy}{dx} = \sec^2 x$

Worked example	Your turn
Differentiate with respect to x : $y = \operatorname{cosec} x$	Differentiate with respect to x : $y = \sec x$
	$\frac{dy}{dx} = \sec x \tan x$

Worked example	Your turn
Differentiate with respect to x : $y = \tan 2x$	Differentiate with respect to x : $y = \tan 4x$
	$\frac{dy}{dx} = 4\sec^2 4x$
$f(x) = \tan(-\frac{x}{3})$	

Worked example	Your turn
Differentiate with respect to x : $y = \cot 2x$	Differentiate with respect to x : $y = \cot 4x$
	$\frac{dy}{dx} = -4 \ cosec^2 4x$
$f(x) = \cot(-\frac{x}{3})$	

Worked example	Your turn
Differentiate with respect to x : $y = \sec 2x$	Differentiate with respect to x : $y = \sec 4x$
	$\frac{dy}{dx} = 4 \sec 4x \tan 4x$
$f(x) = \sec(-\frac{x}{3})$	

Worked example	Your turn
Differentiate with respect to x : $y = \csc 2x$	Differentiate with respect to x : $y = \operatorname{cosec} 4x$
$f(x) = \csc(-\frac{x}{3})$	$\frac{dy}{dx} = -4 \csc 4x \cot 4x$

Worked example	Your turn
Differentiate with respect to x : $y = \tan^4 2x$	Differentiate with respect to x : $y = \tan^2 4x$
$f(x) = \tan^3(-\frac{x}{3})$	$\frac{dy}{dx} = 8\tan 4x \sec^2 4x$

Worked example	Your turn
Differentiate with respect to x: $y = \cot^4 2x$	Differentiate with respect to x : $y = \cot^2 4x$
	$\frac{dy}{dx} = -8\cot 4x cosec^2 4x$
$f(x) = \cot^3(-\frac{x}{3})$	

Differentiate with respect to x: $y = \sec^4 2x$ Differentiate with respect to x: $y = \sec^2 4x$ dy $dy = \sec^2 4x \tan 4x$	Worked example	Your turn
$dy = 8 \cos^2 4x \tan 4x$	Differentiate with respect to x: $y = \sec^4 2x$	Differentiate with respect to x: $y = \sec^2 4x$
$f(x) = \sec^3\left(-\frac{x}{3}\right)$	$f(x) = \sec^3\left(-\frac{x}{3}\right)$	$\frac{dy}{dx} = 8 \sec^2 4x \tan 4x$

Worked example	Your turn
Differentiate with respect to x: $y = \csc^4 2x$	Differentiate with respect to x: $y = \csc^2 4x$
	$\frac{dy}{dx} = -8\cos^2 4x \cot 4x$
$f(x) = \csc^3(-\frac{x}{3})$	

Worked example	Your turn
Differentiate with respect to <i>x</i> : $y = \frac{\csc 3x}{x^3}$	Differentiate with respect to x: $y = \frac{cosec 2x}{x^2}$ $\frac{dy}{dx} = -\frac{2cosec 2x(x \cot 2x + 1)}{x^3}$

Worked example	Your turn
Worked example Given that $x = \cot y$, express $\frac{dy}{dx}$ in terms of x .	Your turnGiven that $x = \tan y$, express $\frac{dy}{dx}$ in terms of x . $\frac{dy}{dx} = \frac{1}{1+x^2}$

Worked example	Your turn
Differentiate with respect to <i>x</i> : <i>y</i> = arccos <i>x</i>	Differentiate with respect to x: $y = \arcsin x$ $\frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}}$
$y = \arctan x$	

Worked example	Your turn
Differentiate with respect to x: $y = \arccos x^4$	Differentiate with respect to x: $y = \arcsin x^2$ $\frac{dy}{dx} = \frac{2x}{\sqrt{1 - x^4}}$
$y = \arctan x^3$	

Worked example	Your turn
Given that $x = \operatorname{cosec} 3y$, find $\frac{dy}{dx}$ in terms of x	Given that $x = \sec 2y$, find $\frac{dy}{dx}$ in terms of x
	$\frac{dy}{dx} = \frac{1}{2x\sqrt{x^2 - 1}}$

Worked example	Your turn
Given that $y = \arctan\left(\frac{1+x}{1-x}\right)$, find $\frac{dy}{dx}$	Given that $y = \arctan\left(\frac{1-x}{1+x}\right)$, find $\frac{dy}{dx}$
	$\frac{dy}{dx} = -\frac{1}{1+x^2}$
9.7) Parametric differentiation

Worked example	Your turn
Worked example Find the gradient at the point <i>P</i> where $t = 3$, on the curve given parametrically by $x = t^2 - t$, $y = t^4 - 2$, $t \in \mathbb{R}$	Your turnFind the gradient at the point <i>P</i> where $t = 2$, on the curve given parametrically by $x = t^3 + t$, $y = t^2 + 1$, $t \in \mathbb{R}$ $\frac{4}{13}$

Worked example	2		Your turn	
Find the equation of the tangent at the where $t = \frac{\pi}{6}$, to the curve with parameter equations	e point etric	Find the equation of where $t = \frac{\pi}{3}$, to the equations	of the tangent at tl e curve with param	ne point netric
$x = \sqrt{5} \sin 2t$, $y = 8 \cos^2 t$,	$0 \le t \le \pi$	$x=\sqrt{3}\sin 2t$,	$y = 4\cos^2 t$,	$0 \le t \le \pi$
			y = 2x - 2	

Worked example	Your turn
Worked exampleFind the equation of the normal at the point where $\theta = \frac{\pi}{3}$, to the curve with parametric equations $x = 2\cos\theta$, $y = 7\sin\theta$	Find the equation of the normal at the point where $\theta = \frac{\pi}{6}$, to the curve with parametric equations $x = 3 \sin \theta$, $y = 5 \cos \theta$ $y = \frac{3\sqrt{3}}{5}x + \frac{8\sqrt{3}}{5}$

9.8) Implicit differentiation

Worked example	Your turn
Find: $\frac{d}{dx}(y^4)$	Find: $\frac{d}{dx}(2y^3)$ $\frac{6y^2}{dx}\frac{dy}{dx}$
$\frac{d}{dx}(3y^5)$	

Worked example	Your turn
Find: $\frac{d}{dx}(\cos y)$	Find: $\frac{d}{dx}(\sin 3y)$ $3\cos 3y\frac{dy}{dx}$
$\frac{d}{dx}(\tan 2y)$	

Worked example	Your turn
Find:	Find:
$\frac{d}{dx}(e^{y})$	$\frac{a}{dx}(e^{3y})$
	$3e^{3y}\frac{dy}{dx}$
$\frac{d}{dx}(e^{2y})$	

Worked example	Your turn
Find: $\frac{d}{dx}(xy)$	Find: $\frac{d}{dx}(x^{3}y)$ $x^{3}\frac{dy}{dx} + 3x^{2}y$
$\frac{d}{dx}(x^2y)$	

Worked example	Your turn
Find: $\frac{d}{dx}(e^{xy})$	Find: $\frac{d}{dx}(e^{x^3y})$
	$\left(x^3\frac{dy}{dx} + 3x^2y\right)e^{x^3y}$
$\frac{d}{dx}(e^{x^2y})$	

Worked example	Your turn
Find: $\frac{d}{dx}(\cos(x+y))$	Find: $\frac{d}{dx}(\sin(x^3 + 5y))$
	$\left(3x^2 + 5\frac{dy}{dx}\right)(\cos(x^3 + 5y))$
$\frac{d}{dx}(\tan(x^2-4y))$	

Worked example	Your turn
Find $\frac{dy}{dx}$ where: $x^4 - x + y^2 - 3y = 5$	Find $\frac{dy}{dx}$ where: $x^3 + x + y^3 + 3y = 6$
	$\frac{dy}{dx} = \frac{-3x^2 - 1}{3y^2 + 3}$

Worked example	Your turn
Find $\frac{dy}{dx}$ at the point (1, 1), given that: $6x^2y - \frac{4x}{y^2} = 2$	Find $\frac{dy}{dx}$ at the point (1, 1), given that: $4xy^2 + \frac{6x^2}{y} = 10$ $\frac{dy}{dy}$
	$\frac{y}{dx} = -8$

Worked example	Your turn
A curve is described by: $x^{3} + 4y^{2} = -12xy$ Find the gradient of the curve at the points where $x = 8$	A curve is described by: $x^3 - 4y^2 = 12xy$ Find the gradient of the curve at the points where $x = -8$ $\frac{dy}{dx} = -3$ at $(-8, 16)$ $\frac{dy}{dx} = 0$ at $(-8, 8)$

Worked example	Your turn
$x^2 + y^2 + 20x + 4y - 8xy = -75$	$x^2 + y^2 + 10x + 2y - 4xy = 10$
Find the values of y for which $\frac{dy}{dx} = 0$	Find the values of y for which $\frac{dy}{dx} = 0$
ι	$y = \frac{7}{3}, 5$

Worked example	Your turn
A curve has equation $x^2 + 4xy + y^2 - x = 35$ Find the equation of the tangent to the curve at the point (2, 3). Give your answer in the form $ax + by + c = 0$, where a, b and c are integers	A curve has equation $x^2 + 2xy - y^2 + x = 20$ Find the equation of the tangent to the curve at the point (3, 2). Give your answer in the form $ax + by + c = 0$, where a, b and c are integers
	11x + 2y - 37 = 0

Worked example	Your turn
The curve $ye^{-4x} = 4x - y^2$. Find the equation of the normal(s) to the curve at the point where $x = 0$. Give your answer in the form $ax + by + c = 0$	The curve $ye^{-2x} = 2x + y^2$. Find the equation of the normal(s) to the curve at the point where $x = 0$. Give your answer in the form $ax + by + c = 0$
	2x + y = 0 at (0,0)

x - 4y + 4 = 0 at (0, 1)

9.9) Using second derivatives

Worked example	Your turn
Find the interval on which the function is concave:	Find the interval on which the function is concave:
$f(x) = x^3 - 2x + 5$	$h(x) = x^3 + 4x + 3$
	$x \leq 0$
$g(x) = 2x^3 - 5x^2 - 6$	

Worked example	Your turn
Find the interval on which the function is convex:	Find the interval on which the function is convex:
$f(x) = x^3 - 2x + 5$	$h(x) = x^3 + 4x + 3$
	$x \ge 0$
$g(x) = 2x^3 - 5x^2 - 6$	

Worked example	Your turn
Show that the function is convex for all real values of x: $f(x) = e^{3x} + x^2$	Show that the function is convex for all real values of x: $h(x) = e^{2x} + x^2$
	Shown that $h''(x) \ge 0$ for $x \in \mathbb{R}$
$g(x) = e^{4x} + x^4$	

Worked example	Your turn
Determine if there is a point of inflection on the curve with equation $y = (x - 3)^4$	Determine if there is a point of inflection on the curve with equation $y = (x + 5)^4$
	No $\frac{d^2y}{dx^2} = 12(x+5)^2 \ge 0$ Either side of $x = -5$, $\frac{d^2y}{dx^2}$ always positive. Therefore local minimum at (-5,0)

A curve C has equation
$y = \frac{1}{5}x^{2}\ln x + 4x - 3, x > 0$ Find where C is convex $x \ge e^{-\frac{3}{2}}$
F

9.10) Rates of change

Worked example	Your turn
Atmospheric pressure decreases as altitude	In the decay of radioactive particles, the rate
increases. The rate at which atmospheric	at which particles decay is proportional to
pressure decreases is proportional to the	the number of particles remaining. Write
current air pressure. Write down a	down a differential equation for the rate of
differential equation for the rate of change	change of the number of particles.
of the atmospheric pressure.	$N = \text{number of particles}$ $t = \text{time}$ $\frac{dN}{dt} = -kN, k > 0$

Worked example	Your turn
An metal bar is heated from a starting temperature. It is noted that the rate of gain of temperature of the metal bar is proportional to the difference between the temperature of the metal bar and its surroundings. Write a differential equation to represent this situation.	An object is heated to a certain temperature, then allowed to cool down. It is noted that the rate of loss of temperature of the object is proportional to the difference between the temperature of the object and its surroundings. Write a differential equation to represent this situation.
	$\theta = \text{temperature of object (degrees)}$ t = time (seconds) $\theta_0 = \text{temperature of the surroundings}$ $\frac{d\theta}{dt} = -k(\theta - \theta_0), k > 0$ Newton's law of cooling

Worked example	Your turn
Determine the rate of change of the area A of a circle when the radius $r = 7$ cm, given that the radius is changing at a rate of 4 cm s^{-1} .	Determine the rate of change of the area A of a circle when the radius $r = 3$ cm, given that the radius is changing at a rate of $5 \ cm \ s^{-1}$. $\frac{dA}{dt} = 30\pi \ cm^2 \ s^{-1}$

Worked example	Your turn
A cube is expanding uniformly as it is heated. At time t seconds, the length of each edge is x cm and the volume of the cube is $V \ cm^3$. Given that the volume increases at a constant rate of $0.024 \ cm^3 \ s^{-1}$, find the rate of increase of the total surface area of the cube in $cm^2 \ s^{-1}$ when $x = 4$	A cube is expanding uniformly as it is heated. At time t seconds, the length of each edge is x cm and the volume of the cube is V cm ³ . Given that the volume increases at a constant rate of 0.048 cm ³ s ⁻¹ , find the rate of increase of the total surface area of the cube in cm ² s ⁻¹ when $x = 8$
	$0.024 \ cm^2 \ s^{-1}$

Worked example	Your turn
A right circular cylindrical metal rod is expanding as it is heated. After t seconds the radius of the rod is x cm and the length of the rod is $5x$ cm. The cross-sectional area of the rod is increasing at the constant rate of $0.016 \ cm^2 \ s^{-1}$. Find the rate of increase of the volume of the rod when $x = 4$	A right circular cylindrical metal rod is expanding as it is heated. After t seconds the radius of the rod is x cm and the length of the rod is 5x cm. The cross-sectional area of the rod is increasing at the constant rate of $0.032 \ cm^2 \ s^{-1}$. Find the rate of increase of the volume of the rod when $x = 2$
	$0.48 \ cm^3 \ s^{-1}$