9) Differentiation

9.1) Differentiating $\sin x$ and $\cos x$
9.2) Differentiating exponentials and logarithms
9.3) The chain rule
9.4) The product rule
9.5) The quotient rule
9.6) Differentiating trigonometric functions
9.7) Parametric differentiation
9.8) Implicit differentiation
9.9) Using second derivatives
9.10) Rates of change

9.1) Differentiating $\sin x$ and $\cos x$ Chapter CONTENTS

Prove, from first principles, that the derivative of $\sin x$ is $\cos x$. You may assume that as $h \rightarrow 0, \frac{\sin h}{h} \rightarrow 1$ and $\frac{\cos h-1}{h} \rightarrow 0$

Prove, from first principles, that the derivative of $\sin x$ is $\cos x$. You may assume that as $h \rightarrow 0, \frac{\sin h}{h} \rightarrow 1$ and $\frac{\cos h-1}{h} \rightarrow 0$
Let $f(x)=\sin x$

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin (x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sin (x) \cos (h)+\cos (x) \sin (h)-\sin (x)}{h} \\
& =\lim _{h \rightarrow 0}\left(\left(\frac{\cos h-1}{h}\right) \sin x+\left(\frac{\sin h}{h}\right) \cos x\right) \\
& =\lim _{h \rightarrow 0}((0) \sin x+(1) \cos x) \\
& =\cos x
\end{aligned}
$$

Find:

$$
\frac{d}{d x}(\sin 5 x)
$$

$\frac{d}{d x}(6 \sin 7 x-4 \cos 3 x)$
Find:

$$
\frac{d}{d x}\left(\cos \frac{1}{2} x\right)
$$

$$
\begin{gathered}
\frac{d}{d x}\left(\sin \frac{1}{2} x\right) \\
\frac{1}{2} \cos 2 x \\
\frac{d}{d x}(\cos 5 x) \\
-5 \sin 5 x \\
\frac{d}{d x}(7 \sin 6 x-3 \cos 4 x) \\
42 \cos 6 x+12 \sin 4 x
\end{gathered}
$$

Your turn

A curve has equation $y=\frac{1}{4} x-\cos 3 x$. Find the stationary points on the curve in the interval $0 \leq x \leq \pi$

A curve has equation $y=\frac{1}{2} x-\cos 2 x$.
Find the stationary points on the curve in the interval $0 \leq x \leq \pi$
(1.70, 1.82) and (3.02, 0.539) (3 sf)

A curve has equation $y=\sin 5 x+3 x$. Find the stationary points on the curve in the interval $0 \leq x \leq \frac{3}{5} \pi$

A curve has equation $y=\sin 3 x+2 x$. Find the stationary points on the curve in the interval $0 \leq x \leq \frac{2}{3} \pi$
($0.767,2.279$) and ($1.328,1.910$) (3 sf)

A curve has equation $y=\sin 4 x-\cos 3 x$. Find the equation of the tangent to the curve at the point $(\pi, 1)$

A curve has equation $y=\sin 4 x+\cos 3 x$. Find the equation of the tangent to the curve at the point $(\pi,-1)$

$$
y=4 x-4 \pi-1
$$

Your turn

A curve has equation $y=3 x^{2}-\sin x$. Show that the equation of the normal to the curve at the point with x-coordinate π is

$$
x+(6 \pi+1) y-\pi\left(18 \pi^{2}-3 \pi-1\right)=0
$$

A curve has equation $y=3 x^{2}+\sin x$. Show that the equation of the normal to the curve at the point with x-coordinate π is

$$
x+(6 \pi-1) y-\pi\left(18 \pi^{2}-3 \pi+1\right)=0
$$

Shown
9.2) Differentiating exponentials and logarithmschapter CONTENTS

Find:

$$
\begin{aligned}
& \frac{d}{d x}\left(5 e^{2 x}\right) \\
& \frac{d}{d x}\left(4 e^{\frac{1}{3} x}\right) \\
& \frac{d}{d x}\left(3 e^{-0.5 x}\right)
\end{aligned}
$$

Find:

$$
\begin{gathered}
\frac{d}{d x}\left(2 e^{\frac{1}{4} x}\right) \\
\frac{1}{2} e^{\frac{1}{4} x}
\end{gathered}
$$

Find:

$$
\begin{aligned}
& \frac{d}{d x}\left(2^{x}\right) \\
& \frac{d}{d x}\left(3^{x}\right) \\
& \frac{d}{d x}\left(4^{x}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d x}\left(5\left(2^{x}\right)\right) \\
& \frac{d}{d x}\left(4\left(3^{x}\right)\right) \\
& \frac{d}{d x}\left(3\left(4^{x}\right)\right)
\end{aligned}
$$

Find:

$$
\begin{gathered}
\frac{d}{d x}\left(2\left(5^{x}\right)\right) \\
5^{x} 2 \ln 5
\end{gathered}
$$

Find:

$$
\begin{aligned}
& \frac{d}{d x}\left(2^{5 x}\right) \\
& \frac{d}{d x}\left(3^{4 x}\right) \\
& \frac{d}{d x}\left(4^{3 x}\right)
\end{aligned}
$$

Find:

$$
\begin{aligned}
& \frac{d}{d x}\left(5^{2 x}\right) \\
& 5^{2 x} 2 \ln 5
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d x}\left(3^{x}\right) \\
& \frac{d}{d x}\left(x^{3}\right)
\end{aligned}
$$

Find:

$$
\begin{gathered}
\frac{d}{d x}\left(5^{x}\right) \\
5^{x} \ln 5 \\
\frac{d}{d x}\left(x^{5}\right) \\
5 x^{4}
\end{gathered}
$$

Find:
$\frac{d}{d x}(\ln 2 x)$
$\frac{d}{d x}(\ln 3 x)$

$$
\frac{d}{d x}(\ln 4 x)
$$

Your turn
Find:

$$
\begin{gathered}
\frac{d}{d x}(\ln 5 x) \\
\frac{1}{x}
\end{gathered}
$$

Find:

$$
\begin{gathered}
\frac{d}{d x}(5 \ln x) \\
\frac{5}{x}
\end{gathered}
$$

Find:

$$
\begin{aligned}
& \frac{d}{d x}\left(\ln x^{2}\right) \\
& \frac{d}{d x}\left(\ln x^{3}\right) \\
& \frac{d}{d x}\left(\ln x^{4}\right)
\end{aligned}
$$

Your turn

Find:

$$
\begin{gathered}
\frac{d}{d x}\left(\ln x^{5}\right) \\
\frac{5}{x}
\end{gathered}
$$

Find:

$$
\frac{d}{d x}\left(\frac{3+2 e^{5 x}}{7 e^{4 x}}\right)
$$

$$
\frac{d}{d x}\left(\frac{7-5 e^{-4 x}}{3 e^{2 x}}\right)
$$

Find:

$$
\begin{gathered}
\frac{d}{d x}\left(\frac{2-3 e^{7 x}}{4 e^{3 x}}\right) \\
-\frac{3}{2} e^{-3 x}-3 e^{4 x}
\end{gathered}
$$

Your turn

Find:

$$
\frac{d}{d x}\left(e^{x}-3\right)^{2}
$$

Find:

$$
\begin{aligned}
& \frac{d}{d x}\left(e^{x}+5\right)^{2} \\
& 2 e^{2 x}+10 e^{x}
\end{aligned}
$$

The population P of a species after t days can be modelled using $P=640\left(2^{-3 t}\right)$
a) Determine how many days have elapsed before there are 20 individuals left b) Determine the rate of change of the population after 3 days.

The population P of a species after t days can be modelled using $P=460\left(3^{-2 t}\right)$
a) Determine how many days have elapsed before there are 20 individuals left
b) Determine the rate of change of the population after 3 days.
a) 1.43 days
b) -1.39 individuals/day

Worked example

Your turn

A curve has the equation

$$
y=e^{4 x}-\ln x
$$

Show that the equation of the tangent to the curve at the point with x-coordinate 1 is:

$$
y=\left(4 e^{4}-1\right) x-3 e^{4}+1
$$

A curve has the equation

$$
y=e^{3 x}-\ln x
$$

Show that the equation of the tangent to the curve at the point with x-coordinate 1 is:

$$
y=\left(3 e^{3}-1\right) x-2 e^{3}+1
$$

Shown

Your turn

A curve has the equation

$$
y=5\left(2^{3 x}\right)
$$

Find the equation of the normal to the curve at the point with x-coordinate 1 in the form $y=a x+b$, where a and b are constants to be found in exact form

A curve has the equation

$$
y=4\left(3^{2 x}\right)
$$

Find the equation of the normal to the curve at the point with x-coordinate 1 in the form $y=a x+b$, where a and b are constants to be found in exact form

$$
\begin{aligned}
y & =-\frac{1}{72 \ln 3} x+\frac{1}{72 \ln 3}+36 \\
a & =-\frac{1}{72 \ln 3} \\
b & =\frac{1}{72 \ln 3}+36
\end{aligned}
$$

Differentiate with respect to x :

$$
\begin{gathered}
y=\left(4 x^{3}-x\right)^{7} \\
f(x)=\left(7 x^{2}-3 x\right)^{4}
\end{gathered}
$$

Differentiate with respect to x :

$$
\begin{gathered}
y=\left(3 x^{4}+x\right)^{5} \\
\frac{d y}{d x}=5\left(3 x^{4}+x\right)^{4}\left(12 x^{3}+1\right)
\end{gathered}
$$

Differentiate with respect to x :

$$
y=(\ln x)^{3}
$$

$$
f(x)=(\ln x)^{4}
$$

Differentiate with respect to x :

$$
\begin{aligned}
y & =(\ln x)^{5} \\
\frac{d y}{d x} & =\frac{5(\ln x)^{4}}{x}
\end{aligned}
$$

Differentiate with respect to x :

$$
y=e^{x^{2}+x}
$$

$$
f(x)=e^{x^{3}-2 x+1}
$$

Differentiate with respect to x :

$$
\begin{gathered}
y=e^{x^{4}-3 x^{2}-1} \\
\frac{d y}{d x}=\left(4 x^{3}-6 x\right) e^{x^{4}-3 x^{2}-1}
\end{gathered}
$$

Differentiate with respect to x :

$$
\begin{gathered}
y=\left(3^{x}+1\right)^{2} \\
f(x)=\left(2^{x}-3 x\right)^{4}
\end{gathered}
$$

Differentiate with respect to x :

$$
\begin{gathered}
y=\left(4^{x}-2 x\right)^{3} \\
\frac{d y}{d x}=3\left(4^{x}-2 x\right)^{2}\left(4^{x} \ln 4-2\right)
\end{gathered}
$$

Your turn

Differentiate with respect to x :
$y=\ln (\sin x)$

Differentiate with respect to x :

$$
\begin{gathered}
y=\ln (\cos x) \\
\frac{d y}{d x}=\tan x
\end{gathered}
$$

Your turn

Differentiate with respect to x :

$$
y=\ln \left(x^{2}-3 x+4\right)
$$

$$
f(x)=\ln \left(x^{3}-2 x-5\right)
$$

Differentiate with respect to x :

$$
\begin{gathered}
y=\ln \left(x^{4}-5 x^{2}-3\right) \\
\frac{d y}{d x}=\frac{4 x^{3}-10 x}{x^{4}-5 x^{2}-3}
\end{gathered}
$$

Differentiate with respect to x :

$$
y=\sin 5 x
$$

$$
f(x)=\cos (-4 x)
$$

Differentiate with respect to x :

$$
y=\cos 3 x
$$

$$
\frac{d y}{d x}=-3 \sin 3 x
$$

Differentiate with respect to x :

$$
\begin{gathered}
y=\sin ^{4} x \\
f(x)=\cos ^{3} x
\end{gathered}
$$

Differentiate with respect to x :

$$
y=\sin ^{2} x
$$

$$
\frac{d y}{d x}=2 \sin x \cos x=\sin 2 x
$$

Your turn

Differentiate with respect to x :

$$
\begin{gathered}
y=\sin ^{4} 3 x \\
f(x)=\cos ^{3} 2 x
\end{gathered}
$$

Differentiate with respect to x :

$$
y=\sin ^{2} 3 x
$$

$\frac{d y}{d x}=6 \sin 3 x \cos 3 x=3 \sin 6 x$

Differentiate with respect to x :

$$
\begin{gathered}
y=\sqrt{2 x-1} \\
f(x)=\sqrt[3]{4 x^{2}+5}
\end{gathered}
$$

Differentiate with respect to x :

$$
\begin{gathered}
y=\sqrt[4]{2 x^{3}+1} \\
\frac{d y}{d x}=\frac{1}{4}\left(2 x^{3}+1\right)^{-\frac{3}{4}}\left(6 x^{2}\right)
\end{gathered}
$$

Your turn

Differentiate with respect to x :

$$
y=e^{e^{-x}}
$$

Differentiate with respect to x :

$$
\begin{gathered}
y=e^{e^{x}} \\
\frac{d y}{d x}=e^{x}\left(e^{e^{x}}\right)
\end{gathered}
$$

Worked example

Your turn

Find the gradient of:
$x=(1+2 y)^{3}$ when $y=1$
Find the gradient of:

$$
x=\left(2 y^{3}-3\right)^{5} \text { at }(-1,1)
$$

Find $\frac{d y}{d x}$ when:

$$
\begin{gathered}
x=4 y^{3}-y+2 \\
\frac{1}{12 y^{2}-1}
\end{gathered}
$$

Your turn

A curve C has equation

$$
y=\frac{3}{(2-5 x)^{4}}, x \neq \frac{2}{5}
$$

Find an equation for the normal to C at the point with x-coordinate 1 in the form $a x+$ $b y+c=0$, where a, b and c are integers

A curve C has equation

$$
y=\frac{4}{(3-2 x)^{5}}, x \neq \frac{3}{2}
$$

Find an equation for the normal to C at the point with x-coordinate 2 in the form $a x+$ $b y+c=0$, where a, b and c are integers

$$
x+40 y+158=0
$$

Your turn

Differentiate with respect to x :

$$
y=x^{2} e^{3 x}
$$

$$
f(x)=x^{5} e^{2 x}
$$

Differentiate with respect to x :

$$
\begin{gathered}
y=x^{3} e^{2 x} \\
\frac{d y}{d x}=x^{2} e^{2 x}(2 x+3)
\end{gathered}
$$

Your turn

Differentiate with respect to x :

$$
y=x^{2} \ln 3 x
$$

$$
f(x)=x^{4} \ln 5 x
$$

Differentiate with respect to x :

$$
\begin{gathered}
y=x^{3} \ln 2 x \\
\frac{d y}{d x}=x^{2}(1+3 \ln 2 x)
\end{gathered}
$$

Differentiate with respect to x :

$$
y=2 x^{3}(4 x-5)^{6}
$$

$$
f(x)=6 x^{5}(4 x-3)^{2}
$$

Differentiate with respect to x :

$$
y=3 x^{2}(6 x-5)^{4}
$$

$$
\frac{d y}{d x}=6 x(6 x-5)^{3}(18 x-5)
$$

Your turn

Differentiate with respect to x :

$$
y=x^{3} \sin x
$$

$$
f(x)=x^{4} \cos x
$$

Differentiate with respect to x :

$$
y=x^{2} \sin x
$$

$$
\frac{d y}{d x}=x(x \cos x+2 \sin x)
$$

Differentiate with respect to x :
$y=e^{3 x} \sin ^{4} 2 x$

$$
f(x)=e^{2 x} \cos ^{3} 4 x
$$

Differentiate with respect to x :

$$
y=e^{4 x} \sin ^{2} 3 x
$$

$$
\frac{d y}{d x}=e^{4 x} \sin 3 x(6 \cos 3 x+4 \sin 3 x)
$$

Determine the coordinates of the turning point:

$$
\begin{gathered}
y=x e^{3 x} \\
f(x)=x e^{4 x}
\end{gathered}
$$

Determine the coordinates of the turning point:

$$
\begin{aligned}
& y=x e^{2 x} \\
& \left(-\frac{1}{2},-\frac{1}{2 e}\right)
\end{aligned}
$$

Your turn

Differentiate with respect to x :

$$
y=x^{2} \sqrt{5 x-2}
$$

Differentiate with respect to x :

$$
\begin{gathered}
y=x^{2} \sqrt{3 x-1} \\
\frac{d y}{d x}=\frac{x(15 x-4)}{2 \sqrt{3 x-1}}
\end{gathered}
$$

Your turn

Find the equation of the tangent to the curve with equation $y=x^{2} \sin \left(x^{2}\right)$ at the point $\left(\frac{\sqrt{\pi}}{2}, \frac{\pi \sqrt{2}}{8}\right)$ in the form $a x+b y+c=0$ where a, b and c are exact constants.

Find the equation of the tangent to the curve with equation $y=x^{2} \cos \left(x^{2}\right)$ at the point $\left(\frac{\sqrt{\pi}}{2}, \frac{\pi \sqrt{2}}{8}\right)$ in the form $a x+b y+c=0$ where a, b and c are exact constants.

$$
\sqrt{2 \pi}(\pi-4) x+8 y-\pi \sqrt{2}\left(\frac{\pi-2}{2}\right)=0
$$

Differentiate with respect to x :

$$
\frac{d y}{d x}=\frac{1}{5 x(x+1)^{\frac{1}{2}}}
$$

Differentiate with respect to x :

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{1}{6 x(x-1)^{\frac{1}{2}}} \\
\frac{d^{2} y}{d x^{2}} & =\frac{2-3 x}{12 x^{2}(x-1)^{\frac{3}{2}}}
\end{aligned}
$$

Differentiate with respect to x :

$$
y=\frac{3 x}{5 x-2}
$$

Differentiate with respect to x :

$$
y=\frac{x}{2 x+5}
$$

$$
\frac{d y}{d x}=\frac{5}{(2 x+5)^{2}}
$$

Differentiate with respect to x :

$$
y=\frac{x^{2}}{\ln 5 x}
$$

$$
y=\frac{\ln 4 x}{x^{4}}
$$

Differentiate with respect to x :

$$
\begin{gathered}
y=\frac{x^{3}}{\ln 3 x} \\
\frac{d y}{d x}=\frac{x^{2}(3 \ln 3 x-1)}{(\ln 3 x)^{2}}
\end{gathered}
$$

Differentiate with respect to x :

$$
y=\frac{\cos 3 x}{x^{4}}
$$

$$
f(x)=\frac{x^{4}}{\cos 3 x}
$$

Differentiate with respect to x :

$$
y=\frac{\sin 4 x}{x^{3}}
$$

$$
\frac{d y}{d x}=\frac{4 x \cos 4 x-3 \sin 4 x}{x^{4}}
$$

Find the stationary point of

$$
y=\frac{\cos x}{e^{3 x}}, 0<x<\pi
$$

Find the stationary point of

$$
y=\frac{\sin x}{e^{2 x}}, 0<x<\pi
$$

(0.464, 0.177) (3 dp)

Your turn

Find the equation of the tangent to the curve $y=\frac{e^{\frac{1}{4} x}}{x}$ at the point ($4, \frac{1}{4} e$)

Find the equation of the tangent to the
curve $y=\frac{e^{\frac{1}{2} x}}{x}$ at the point ($2, \frac{1}{2} e$)

$$
y=\frac{1}{2} e
$$

9.6) Differentiating trigonometric functions Chapter CONTENTS

Differentiate with respect to x :

$$
y=\cot x
$$

Differentiate with respect to x :

$$
\begin{gathered}
y=\tan x \\
\frac{d y}{d x}=\sec ^{2} x
\end{gathered}
$$

Differentiate with respect to x :

$$
y=\operatorname{cosec} x
$$

Differentiate with respect to x :

$$
y=\sec x
$$

$$
\frac{d y}{d x}=\sec x \tan x
$$

Differentiate with respect to x :
$y=\tan 2 x$

$$
f(x)=\tan \left(-\frac{x}{3}\right)
$$

Differentiate with respect to x :

$$
\begin{gathered}
y=\tan 4 x \\
\frac{d y}{d x}=4 \sec ^{2} 4 x
\end{gathered}
$$

Differentiate with respect to x :
$y=\cot 2 x$

$$
f(x)=\cot \left(-\frac{x}{3}\right)
$$

Differentiate with respect to x :

$$
\begin{gathered}
y=\cot 4 x \\
\frac{d y}{d x}=-4 \operatorname{cosec}^{2} 4 x
\end{gathered}
$$

Differentiate with respect to x :

$$
y=\sec 2 x
$$

$$
f(x)=\sec \left(-\frac{x}{3}\right)
$$

Differentiate with respect to x :
$y=\sec 4 x$

$$
\frac{d y}{d x}=4 \sec 4 x \tan 4 x
$$

Differentiate with respect to x :

$$
y=\operatorname{cosec} 2 x
$$

$$
f(x)=\operatorname{cosec}\left(-\frac{x}{3}\right)
$$

Differentiate with respect to x :

$$
\begin{gathered}
y=\operatorname{cosec} 4 x \\
\frac{d y}{d x}=-4 \operatorname{cosec} 4 x \cot 4 x
\end{gathered}
$$

Differentiate with respect to x :
$y=\tan ^{4} 2 x$

$$
f(x)=\tan ^{3}\left(-\frac{x}{3}\right)
$$

Differentiate with respect to x :

$$
\begin{gathered}
y=\tan ^{2} 4 x \\
\frac{d y}{d x}=8 \tan 4 x \sec ^{2} 4 x
\end{gathered}
$$

Differentiate with respect to x :
$y=\cot ^{4} 2 x$

$$
f(x)=\cot ^{3}\left(-\frac{x}{3}\right)
$$

Differentiate with respect to x :
$y=\cot ^{2} 4 x$

$$
\frac{d y}{d x}=-8 \cot 4 x \operatorname{cosec}^{2} 4 x
$$

Differentiate with respect to x :

$$
y=\sec ^{4} 2 x
$$

$$
f(x)=\sec ^{3}\left(-\frac{x}{3}\right)
$$

Differentiate with respect to x :

$$
\begin{gathered}
y=\sec ^{2} 4 x \\
\frac{d y}{d x}=8 \sec ^{2} 4 x \tan 4 x
\end{gathered}
$$

Differentiate with respect to x :
$y=\operatorname{cosec}^{4} 2 x$

$$
f(x)=\operatorname{cosec}^{3}\left(-\frac{x}{3}\right)
$$

Differentiate with respect to x :

$$
y=\operatorname{cosec}^{2} 4 x
$$

$$
\frac{d y}{d x}=-8 \operatorname{cosec}^{2} 4 x \cot 4 x
$$

Differentiate with respect to x :

$$
y=\frac{\operatorname{cosec} 3 x}{x^{3}}
$$

Differentiate with respect to x :

$$
y=\frac{\operatorname{cosec} 2 x}{x^{2}}
$$

$$
\frac{d y}{d x}=-\frac{2 \operatorname{cosec} 2 x(x \cot 2 x+1)}{x^{3}}
$$

Given that $x=\cot y$, express $\frac{d y}{d x}$ in terms of x. Given that $x=\tan y$, express $\frac{d y}{d x}$ in terms of x.

$$
\frac{d y}{d x}=\frac{1}{1+x^{2}}
$$

Your turn

Differentiate with respect to x :
$y=\arccos x$
$y=\arctan x$

Differentiate with respect to x :

$$
\begin{aligned}
y & =\arcsin x \\
\frac{d y}{d x} & =\frac{1}{\sqrt{1-x^{2}}}
\end{aligned}
$$

Differentiate with respect to x :
$y=\arccos x^{4}$

$$
y=\arctan x^{3}
$$

Differentiate with respect to x :

$$
\begin{gathered}
y=\arcsin x^{2} \\
\frac{d y}{d x}=\frac{2 x}{\sqrt{1-x^{4}}}
\end{gathered}
$$

Given that $x=\operatorname{cosec} 3 y$, find $\frac{d y}{d x}$ in terms of $x \quad$ Given that $x=\sec 2 y$, find $\frac{d y}{d x}$ in terms of x

$$
\frac{d y}{d x}=\frac{1}{2 x \sqrt{x^{2}-1}}
$$

Given that $y=\arctan \left(\frac{1-x}{1+x}\right)$, find $\frac{d y}{d x}$

$$
\frac{d y}{d x}=-\frac{1}{1+x^{2}}
$$

Your turn

Find the gradient at the point P where $t=3, \quad$ Find the gradient at the point P where $t=2$, on the curve given parametrically by

$$
x=t^{2}-t, \quad y=\mathrm{t}^{4}-2, \quad \mathrm{t} \in \mathbb{R}
$$

$$
x=t^{3}+t, \quad y=\mathrm{t}^{2}+1, \quad \mathrm{t} \in \mathbb{R}
$$

$$
\frac{4}{13}
$$

Your turn

Find the equation of the tangent at the point where $t=\frac{\pi}{6}$, to the curve with parametric equations

$$
x=\sqrt{5} \sin 2 t, \quad y=8 \cos ^{2} t, \quad 0 \leq t \leq \pi
$$

Find the equation of the tangent at the point where $t=\frac{\pi}{3}$, to the curve with parametric equations

$$
\begin{gathered}
x=\sqrt{3} \sin 2 t, \quad y=4 \cos ^{2} t, \quad 0 \leq t \leq \pi \\
y=2 x-2
\end{gathered}
$$

Your turn

Find the equation of the normal at the point where $\theta=\frac{\pi}{3}$, to the curve with parametric equations

$$
x=2 \cos \theta, \quad y=7 \sin \theta
$$

Find the equation of the normal at the point where $\theta=\frac{\pi}{6}$, to the curve with parametric equations

$$
\begin{gathered}
x=3 \sin \theta, \quad y=5 \cos \theta \\
y=\frac{3 \sqrt{3}}{5} x+\frac{8 \sqrt{3}}{5}
\end{gathered}
$$

Your turn

Find:

$$
\begin{gathered}
\frac{d}{d x}\left(y^{4}\right) \\
\frac{d}{d x}\left(3 y^{5}\right)
\end{gathered}
$$

Find:

$$
\begin{aligned}
& \frac{d}{d x}\left(2 y^{3}\right) \\
& 6 y^{2} \frac{d y}{d x}
\end{aligned}
$$

Your turn

Find:

$$
\begin{aligned}
& \frac{d}{d x}(\cos y) \\
& \frac{d}{d x}(\tan 2 y)
\end{aligned}
$$

Find:

$$
\begin{aligned}
& \frac{d}{d x}(\sin 3 y) \\
& 3 \cos 3 y \frac{d y}{d x}
\end{aligned}
$$

Find:

$$
\begin{aligned}
& \frac{d}{d x}\left(e^{y}\right) \\
& \frac{d}{d x}\left(e^{2 y}\right)
\end{aligned}
$$

Find:

$$
\begin{aligned}
& \frac{d}{d x}\left(e^{3 y}\right) \\
& 3 e^{3 y} \frac{d y}{d x}
\end{aligned}
$$

Your turn

Find:

$$
\begin{aligned}
& \frac{d}{d x}(x y) \\
& \frac{d}{d x}\left(x^{2} y\right)
\end{aligned}
$$

Find:

$$
\begin{gathered}
\frac{d}{d x}\left(x^{3} y\right) \\
x^{3} \frac{d y}{d x}+3 x^{2} y
\end{gathered}
$$

Your turn

Find:

$$
\begin{aligned}
& \frac{d}{d x}\left(e^{x y}\right) \\
& \frac{d}{d x}\left(e^{x^{2} y}\right)
\end{aligned}
$$

Find:

$$
\begin{gathered}
\frac{d}{d x}\left(e^{x^{3} y}\right) \\
\left(x^{3} \frac{d y}{d x}+3 x^{2} y\right) e^{x^{3} y}
\end{gathered}
$$

Worked example
Find:

$$
\begin{gathered}
\frac{d}{d x}(\cos (x+y)) \\
\frac{d}{d x}\left(\tan \left(x^{2}-4 y\right)\right)
\end{gathered}
$$

Find:

$$
\begin{gathered}
\frac{d}{d x}\left(\sin \left(x^{3}+5 y\right)\right) \\
\left(3 x^{2}+5 \frac{d y}{d x}\right)\left(\cos \left(x^{3}+5 y\right)\right)
\end{gathered}
$$

Your turn

Find $\frac{d y}{d x}$ where:

$$
x^{4}-x+y^{2}-3 y=5
$$

Find $\frac{d y}{d x}$ where:

$$
x^{3}+x+y^{3}+3 y=6
$$

$$
\frac{d y}{d x}=\frac{-3 x^{2}-1}{3 y^{2}+3}
$$

Find $\frac{d y}{d x}$ at the point $(1,1)$, given that:

$$
6 x^{2} y-\frac{4 x}{y^{2}}=2
$$

Find $\frac{d y}{d x}$ at the point $(1,1)$, given that:

$$
\begin{gathered}
4 x y^{2}+\frac{6 x^{2}}{y}=10 \\
\frac{d y}{d x}=-8
\end{gathered}
$$

Worked example

Your turn

A curve is described by:

$$
x^{3}+4 y^{2}=-12 x y
$$

Find the gradient of the curve at the points where $x=8$

A curve is described by:

$$
x^{3}-4 y^{2}=12 x y
$$

Find the gradient of the curve at the points where $x=-8$

$$
\begin{gathered}
\frac{d y}{d x}=-3 \text { at }(-8,16) \\
\frac{d y}{d x}=0 \text { at }(-8,8)
\end{gathered}
$$

Your turn

$$
x^{2}+y^{2}+20 x+4 y-8 x y=-75
$$ Find the values of y for which $\frac{d y}{d x}=0$

$$
x^{2}+y^{2}+10 x+2 y-4 x y=10
$$ Find the values of y for which $\frac{d y}{d x}=0$

$$
y=\frac{7}{3}, 5
$$

Worked example

Your turn

A curve has equation

$$
x^{2}+4 x y+y^{2}-x=35
$$

Find the equation of the tangent to the curve at the point $(2,3)$.
Give your answer in the form $a x+b y+c=0$, where a, b and c are integers

A curve has equation

$$
x^{2}+2 x y-y^{2}+x=20
$$

Find the equation of the tangent to the curve at the point $(3,2)$.
Give your answer in the form $a x+b y+c=0$, where a, b and c are integers

$$
11 x+2 y-37=0
$$

Your turn

The curve $y e^{-4 x}=4 x-y^{2}$.
Find the equation of the normal(s) to the curve at the point where $x=0$.
Give your answer in the form $a x+b y+c=0$

The curve $y e^{-2 x}=2 x+y^{2}$.
Find the equation of the normal(s) to the curve at the point where $x=0$.
Give your answer in the form $a x+b y+c=0$

$$
\begin{gathered}
2 x+y=0 \text { at }(0,0) \\
x-4 y+4=0 \text { at }(0,1)
\end{gathered}
$$

9.9) Using second derivatives

Find the interval on which the function is concave:

$$
f(x)=x^{3}-2 x+5
$$

$$
g(x)=2 x^{3}-5 x^{2}-6
$$

Find the interval on which the function is concave:

$$
\begin{gathered}
h(x)=x^{3}+4 x+3 \\
x \leq 0
\end{gathered}
$$

Find the interval on which the function is convex:

$$
\begin{aligned}
& f(x)=x^{3}-2 x+5 \\
& g(x)=2 x^{3}-5 x^{2}-6
\end{aligned}
$$

Find the interval on which the function is convex:

$$
\begin{gathered}
h(x)=x^{3}+4 x+3 \\
x \geq 0
\end{gathered}
$$

Show that the function is convex for all real values of x :

$$
f(x)=e^{3 x}+x^{2}
$$

$$
g(x)=e^{4 x}+x^{4}
$$

Show that the function is convex for all real values of x :

$$
h(x)=e^{2 x}+x^{2}
$$

Shown that $h^{\prime \prime}(x) \geq 0$ for $x \in \mathbb{R}$

Your turn

Determine if there is a point of inflection on the curve with equation $y=(x-3)^{4}$

Determine if there is a point of inflection on the curve with equation $y=(x+5)^{4}$

No

$$
\frac{d^{2} y}{d x^{2}}=12(x+5)^{2} \geq 0
$$

Either side of $x=-5, \frac{d^{2} y}{d x^{2}}$ always
positive.
Therefore local minimum at $(-5,0)$

Your turn

A curve C has equation

$$
y=\frac{1}{4} x^{2} \ln x-3 x+7, x>0
$$

Find where C is convex

A curve C has equation

$$
y=\frac{1}{5} x^{2} \ln x+4 x-3, x>0
$$

Find where C is convex

$$
x \geq e^{-\frac{3}{2}}
$$

Your turn

Atmospheric pressure decreases as altitude increases. The rate at which atmospheric pressure decreases is proportional to the current air pressure. Write down a differential equation for the rate of change of the atmospheric pressure.

In the decay of radioactive particles, the rate at which particles decay is proportional to the number of particles remaining. Write down a differential equation for the rate of change of the number of particles.
$N=$ number of particles
$t=$ time
$\frac{d N}{d t}=-k N, k>0$

An metal bar is heated from a starting temperature. It is noted that the rate of gain of temperature of the metal bar is proportional to the difference between the temperature of the metal bar and its surroundings. Write a differential equation to represent this situation.

An object is heated to a certain temperature, then allowed to cool down. It is noted that the rate of loss of temperature of the object is proportional to the difference between the temperature of the object and its surroundings. Write a differential equation to represent this situation.
$\theta=$ temperature of object (degrees) $t=$ time (seconds)
$\theta_{0}=$ temperature of the surroundings
$d \theta$
$\frac{d}{d t}=-k\left(\theta-\theta_{0}\right), k>0$
Newton's law of cooling

Determine the rate of change of the area A of a circle when the radius $r=7 \mathrm{~cm}$, given that the radius is changing at a rate of $4 \mathrm{~cm} \mathrm{~s}^{-1}$.

Determine the rate of change of the area A of a circle when the radius $r=3 \mathrm{~cm}$, given that the radius is changing at a rate of $5 \mathrm{~cm} \mathrm{~s}^{-1}$.

$$
\frac{d A}{d t}=30 \pi \mathrm{~cm}^{2} s^{-1}
$$

Your turn

A cube is expanding uniformly as it is heated. At time t seconds, the length of each edge is $x \mathrm{~cm}$ and the volume of the cube is $V \mathrm{~cm}^{3}$. Given that the volume increases at a constant rate of $0.024 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$, find the rate of increase of the total surface area of the cube in $c m^{2} s^{-1}$ when $x=4$

A cube is expanding uniformly as it is heated. At time t seconds, the length of each edge is $x \mathrm{~cm}$ and the volume of the cube is $V \mathrm{~cm}^{3}$.
Given that the volume increases at a constant rate of $0.048 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$, find the rate of increase of the total surface area of the cube in $c m^{2} s^{-1}$ when $x=8$

$$
0.024 \mathrm{~cm}^{2} \mathrm{~s}^{-1}
$$

Your turn

A right circular cylindrical metal rod is expanding as it is heated. After t seconds the radius of the rod is $x \mathrm{~cm}$ and the length of the rod is $5 x \mathrm{~cm}$. The cross-sectional area of the rod is increasing at the constant rate of $0.016 \mathrm{~cm}^{2} \mathrm{~s}^{-1}$. Find the rate of increase of the volume of the rod when $x=4$

A right circular cylindrical metal rod is expanding as it is heated. After t seconds the radius of the rod is $x \mathrm{~cm}$ and the length of the rod is $5 x \mathrm{~cm}$. The cross-sectional area of the rod is increasing at the constant rate of $0.032 \mathrm{~cm}^{2} \mathrm{~s}^{-1}$. Find the rate of increase of the volume of the rod when $x=2$

$$
0.48 \mathrm{~cm}^{3} \mathrm{~s}^{-1}
$$

