8.5) Modelling with parametric equations

Worked example	Your turn
A plane's position at time <i>t</i> seconds after take-off can be modelled with the following parametric equations: $x = (v \cos \theta)t m$, $y = (v \sin \theta)t m$, $t > 0$ where <i>v</i> is the speed of the plane, θ is the angle of elevation of its path, <i>x</i> is the horizontal distance travelled and <i>y</i> is the vertical distance travelled, relative to a fixed origin. When the plane has travelled 500m horizontally, it has climbed 125m. Given that the plane's speed is 40 m s ⁻¹ a) find the parametric equations for the plane's motion. b) find the vertical height of the plane after 20 seconds. c) show that the plane's motion is a straight line. d) explain why the domain of <i>t</i> , $t > 0$, is not realistic.	A plane's position at time <i>t</i> seconds after take-off can be modelled with the following parametric equations: $x = (v \cos \theta)t m$, $y = (v \sin \theta)t m$, $t > 0$ where <i>v</i> is the speed of the plane, θ is the angle of elevation of its path, <i>x</i> is the horizontal distance travelled and <i>y</i> is the vertical distance travelled, relative to a fixed origin. When the plane has travelled 600m horizontally, it has climbed 120m. Given that the plane's speed is 50 m s ⁻¹ , a) find the parametric equations for the plane's motion. b) find the vertical height of the plane after 10 seconds. c) show that the plane's motion is a straight line. a) $x = 49.0t$, $y = 9.80t$ (3 sf) b) 98 <i>m</i> c) $y = \frac{1}{5}x$ which is linear

Worked example

The motion of a figure skater relative to a fixed origin, O, at time t minutes is modelled using the parametric equations

$$x = 4\cos 10t$$
, $y = 6\sin \left(5t - \frac{\pi}{3}\right)$, $t \ge 0$

where *x* and *y* are measured in metres.

- a) Find the coordinates of the figure skater at the beginning of his motion.
- b) Find the coordinates of the point where the figure skater intersects his own path.
- c) Find the coordinates of the points where the path of the figure skater crosses the *y*-axis.
- d) Determine how long it takes the figure skater to complete one complete figure-of-eight motion.

Your turn

The motion of a figure skater relative to a fixed origin, O, at time t minutes is modelled using the parametric equations

$$x = 8\cos 20t$$
, $y = 12\sin\left(10t - \frac{\pi}{3}\right)$, $t \ge 0$

where x and y are measured in metres.

- a) Find the coordinates of the figure skater at the beginning of his motion.
- b) Find the coordinates of the point where the figure skater intersects his own path.
- c) Find the coordinates of the points where the path of the figure skater crosses the *y*-axis.

d) Determine how long it takes the figure skater to complete one complete figure-of-eight motion.

a)
$$t = 0, x = 8, y = -6\sqrt{3}$$

b) $(-4, 0)$
c) $(0, -3.11), (0, 11.59), (0, 3.11), (0, -11.59)$ (2
dp)
d) $\frac{\pi}{5}$ minutes = 37.7 seconds (1 dp)

Worked exampleA stone is thrown from the top of a 50 m high cliff with an initial speed of
 $5 ms^{-1}$ at an angle of 30° above the horizontal. Its position after tA stone is the
 $5 ms^{-1}$ at an angle of 30° above the horizontal. Its position after t

seconds can be described using the parametric equations

$$x = \frac{5\sqrt{3}}{2}t m, \qquad y = \left(-4.9t^2 + \frac{5\sqrt{3}}{2}t + 50\right)m, \qquad 0 \le t \le k$$

where x is the horizontal distance, y is the vertical distance from the ground and k is a constant.

Given that the model is valid from the time the stone is thrown to the time it hits the ground,

- a) find the value of k
- b) find the horizontal distance travelled by the stone once it hits the ground

Your turn

A stone is thrown from the top of a 25 m high cliff with an initial speed of 5 ms^{-1} at an angle of 45° above the horizontal. Its position after t seconds can be described using the parametric equations

$$x = \frac{5\sqrt{2}}{2}t m, \qquad y = \left(-4.9t^2 + \frac{5\sqrt{2}}{2}t + 25\right)m, \qquad 0 \le t \le k$$

where x is the horizontal distance, y is the vertical distance from the ground and k is a constant.

Given that the model is valid from the time the stone is thrown to the time it hits the ground,

- a) find the value of k
- b) find the horizontal distance travelled by the stone once it hits the ground

a)
$$k = 2.65 (2 \text{ dp})$$

b) 9.36 m (2 dp)