8.5) Integrating vectors

Worked example

Your turn

A particle P is moving in a plane. At time t seconds, its velocity $\boldsymbol{v} \mathrm{ms}^{-1}$ is given by

$$
\boldsymbol{v}=2 t \boldsymbol{i}+\frac{1}{3} t^{2} \boldsymbol{j}, \quad t \geq 0
$$

When $t=0$, the position vector of P with respect to a fixed O is $(5 \boldsymbol{i}-4 \boldsymbol{j}) \mathrm{m}$.
Find the position vector of P at time t seconds.
A particle P is moving in a plane. At time t seconds, its velocity $v \mathrm{~ms}^{-1}$ is given by

$$
\boldsymbol{v}=3 t \boldsymbol{i}+\frac{1}{2} t^{2} \boldsymbol{j}, \quad t \geq 0
$$

When $t=0$, the position vector of P with respect to a fixed O is $(2 \boldsymbol{i}-3 \boldsymbol{j}) \mathrm{m}$.
Find the position vector of P at time t seconds.

$$
\left(\left(\frac{3 t^{2}}{2}+2\right) \boldsymbol{i}+\left(\frac{t^{3}}{6}-3\right) \boldsymbol{j}\right) m
$$

Worked example

Your turn

A particle P is moving in a plane so that, at time t seconds, its acceleration is $(3 \boldsymbol{i}-4 t \boldsymbol{j}) \mathrm{ms}^{-2}$.
When $t=2$, the velocity of P is $-3 \boldsymbol{j} \mathrm{~ms}^{-1}$ and the position vector of P is $(20 \boldsymbol{i}+3 \boldsymbol{j}) \mathrm{m}$ with respect to a fixed origin O. Find:
(a) the angle between the direction of motion of P and \boldsymbol{j} when $t=3$
(b) the distance of P from O when $t=0$.

A particle P is moving in a plane so that, at time t seconds, its acceleration is $(4 \boldsymbol{i}-2 t \boldsymbol{j}) \mathrm{ms}^{-2}$.
When $t=3$, the velocity of P is $6 \boldsymbol{i} s^{-1}$ and the position vector of P is $(20 \boldsymbol{i}+3 \boldsymbol{j}) \mathrm{m}$ with respect to a fixed origin
O. Find:
(a) the angle between the direction of motion of P and \boldsymbol{i} when $t=2$
(b) the distance of P from O when $t=0$.
a) $68.2^{\circ}(1 \mathrm{dp})$
b) 25 m

Worked example

Your turn

The velocity of a particle P at time t seconds is $\left(\left(6 t^{2}-4\right) \boldsymbol{i}+10 \boldsymbol{j}\right) m s^{-1}$.
When $t=0$, the position vector of P with respect to a fixed origin O is $(5 \boldsymbol{i}-3 \boldsymbol{j}) m$.
A second particle Q moves with constant velocity $(3 \boldsymbol{i}+5 \boldsymbol{j}) \mathrm{ms}^{-1}$.
When $t=0$, the position vector of Q with respect to the fixed origin O is $2 \boldsymbol{j} m$. Prove that P and Q collide.

The velocity of a particle P at time t seconds is
$\left(\left(3 t^{2}-8\right) \boldsymbol{i}+5 \boldsymbol{j}\right) m s^{-1}$.
When $t=0$, the position vector of P with respect to a fixed origin O is $(2 \boldsymbol{i}-4 \boldsymbol{j}) \mathrm{m}$.
A second particle Q moves with constant velocity $(8 \boldsymbol{i}+4 \boldsymbol{j}) \mathrm{ms}^{-1}$.
When $t=0$, the position vector of Q with respect to the fixed origin O is $2 \boldsymbol{i} \mathrm{~m}$.
Prove that P and Q collide.
Proof

