8.4) Working with vectors

Convert from scalar to vector form:

Displacement $($ from $A)=\binom{5 \cos 60^{\circ}}{5 \sin 60^{\circ}}=\binom{2.5}{4.33} m$

Convert from scalar to vector form:

Force vector $=\binom{8 \cos 45^{\circ}}{-8 \sin 45^{\circ}}=\binom{4 \sqrt{2}}{-4 \sqrt{2}} N$

Your turn

Convert from vector to scalar form:
Velocity $=\binom{-3}{4} \mathrm{~ms}^{-1}$
Convert from vector to scalar form:
Velocity $=\binom{5}{-12} \mathrm{~ms}^{-1}$

$$
\text { Speed }=13 \mathrm{~ms}^{-1}
$$

Your turn

Convert from vector to scalar form:
Acceleration $=(3 \boldsymbol{i}-4 \boldsymbol{j}) \mathrm{ms}^{-2}$
Convert from vector to scalar form:
Acceleration $=(-6 \boldsymbol{i}+8 \boldsymbol{j}) m s^{-2}$
Magnitude of the acceleration $=10 \mathrm{~ms}^{-1}$

Your turn

The velocity of a particle is given by

$$
v=2 \boldsymbol{i}+7 \boldsymbol{j} \mathrm{~ms}^{-1} .
$$

Find:
a) The speed of the particle
b) The angle the direction of motion of the particle makes with the unit vector \boldsymbol{i}
c) The angle the direction of motion of the particle makes with the unit vector \boldsymbol{j}

The velocity of a particle is given by

$$
v=3 \boldsymbol{i}+5 \boldsymbol{j} \mathrm{~ms}^{-1} .
$$

Find:
a) The speed of the particle
b) The angle the direction of motion of the particle makes with the unit vector \boldsymbol{i}
c) The angle the direction of motion of the particle makes with the unit vector \boldsymbol{j}
a) $5.83 \mathrm{~ms}^{-1}(2 \mathrm{dp})$
b) $59.04^{\circ}(2 \mathrm{dp})$
c) $30.96^{\circ}(2 \mathrm{dp})$

Your turn

The velocity of a particle is given by

$$
v=3 \boldsymbol{i}-5 \boldsymbol{j} \mathrm{~ms}^{-1} .
$$

Find:
a) The speed of the particle
b) The angle the direction of motion of the particle makes with the unit vector \boldsymbol{i}
c) The angle the direction of motion of the particle makes with the unit vector \boldsymbol{j}

The velocity of a particle is given by

$$
v=2 \boldsymbol{i}-7 \boldsymbol{j} \mathrm{~ms}^{-1} .
$$

Find:
a) The speed of the particle
b) The angle the direction of motion of the particle makes with the unit vector \boldsymbol{i}
c) The angle the direction of motion of the particle makes with the unit vector \boldsymbol{j}
a) $7.28 \mathrm{~ms}^{-1}(2 \mathrm{dp})$
b) 74.05° (2 dp)
c) $164.05^{\circ}(2 \mathrm{dp})$

Worked example

Your turn

A man walks from A to B and then from B to C. His displacement from A to B is $5 \boldsymbol{i}-6 \boldsymbol{j} \mathrm{~m}$. His displacement from B to C is $4 \boldsymbol{i}+12 \boldsymbol{j} \mathrm{~m}$.
a) What is the magnitude of the displacement from A to C ?
b) What is the total distance the man has walked in getting from A to C.

A man walks from A to B and then from B to C. His displacement from A to B is $6 \boldsymbol{i}+4 \boldsymbol{j} \mathrm{~m}$.
His displacement from B to C is $5 \boldsymbol{i}-12 \boldsymbol{j} \mathrm{~m}$.
a) What is the magnitude of the displacement from A to C ?
b) What is the total distance the man has walked in getting from A to C.
a) 13.60 km (2 dp)
b) 20.21 km (2 dp)

