8.4) Solving binomial problems

mial

Worked example	Your turn
Find the coefficient of x^3 in the binomial expansion of $(3 + x)(2 - 3x)^7$	Find the coefficient of x^3 in the binomial expansion of $(2 + x)(3 - 2x)^7$
	-24948

Worked example	Your turn
The coefficient of x^6 in the expansion of $(1 + qx)^{10}$ is 153090. Find the possible value(s) of the constant q .	The coefficient of x^4 in the expansion of $(1 + qx)^{10}$ is 3360. Find the possible value(s) of the constant q .
	$q = \pm 2$

Worked example	Your turn
In the expansion of $(1 + ax)^8$, where a is a non-zero constant the coefficient of x^3 is quadruple the coefficient of x^2 . Find the value of a .	In the expansion of $(1 + ax)^{10}$, where a is a non-zero constant the coefficient of x^3 is double the coefficient of x^2 . Find the value of a .
	$a = \frac{3}{4}$

Worked example	Your turn
Given that, in the expansion of $(1 + qx)^8$, the coefficient of x is $-r$ and the coefficient of x^2 is $14r$, find the value of q and the value of r	Given that, in the expansion of $(1 + qx)^8$, the coefficient of x is $-r$ and the coefficient of x^2 is $7r$, find the value of q and the value of r

q = -2, r = 16

Worked example	Your turn
In the binomial expansion of $(1 + x)^{40}$, the coefficients of x^{19} and x^{20} are p and q respectively. Find the value of $\frac{q}{p}$	In the binomial expansion of $(1 + x)^{20}$, the coefficients of x^9 and x^{11} are p and q respectively. Find the value of $\frac{q}{p}$
	1