8.4) Solving binomial problems

Your turn

Find the coefficient of x^{6} in the binomial expansion of $(3+2 x)^{10}$

Find the coefficient of x^{4} in the binomial expansion of $(2+3 x)^{10}$

1088640

Your turn

Find the coefficient of x^{3} in the binomial expansion of $(3+x)(2-3 x)^{7}$

Find the coefficient of x^{3} in the binomial expansion of $(2+x)(3-2 x)^{7}$
-24948

Your turn

The coefficient of x^{6} in the expansion of
The coefficient of x^{4} in the expansion of $(1+q x)^{10}$ is 3360 . Find the possible value(s) of the constant q.

$$
q= \pm 2
$$

Your turn

In the expansion of $(1+a x)^{8}$, where a is a non-zero constant the coefficient of x^{3} is quadruple the coefficient of x^{2}. Find the value of a.

In the expansion of $(1+a x)^{10}$, where a is a non-zero constant the coefficient of x^{3} is double the coefficient of x^{2}. Find the value of a.

$$
a=\frac{3}{4}
$$

Given that, in the expansion of $(1+q x)^{8}$, the coefficient of x is $-r$ and the coefficient of x^{2} is $14 r$, find the value of q and the value of r

Given that, in the expansion of
$(1+q x)^{8}$, the coefficient of x is $-r$ and the coefficient of x^{2} is $7 r$, find the value of q and the value of r

$$
q=-2, r=16
$$

In the binomial expansion of $(1+x)^{40}$, the coefficients of x^{19} and x^{20} are p and q respectively. Find the value of $\frac{q}{p}$

In the binomial expansion of $(1+x)^{20}$, the coefficients of x^{9} and x^{11} are p and q respectively. Find the value of $\frac{q}{p}$

