8.4) Differentiating vectors

Worked example

Your turn

A particle P of mass 1.6 kg is acted on by a single force $\mathbf{F} \mathrm{N}$. Relative to a fixed origin O, the position vector of P at time t seconds is \boldsymbol{r} metres, where

$$
\boldsymbol{r}=5 t^{3} \boldsymbol{i}+20 t^{-\frac{1}{5} \boldsymbol{j}}, \quad t \geq 0
$$

Find:
(a) the speed of P when $t=2$
(b) the acceleration of P as a vector when $t=4$
(c) \mathbf{F} when $t=4$.

A particle P of mass 0.8 kg is acted on by a single force $\mathbf{F} \mathrm{N}$. Relative to a fixed origin O, the position vector of P at time t seconds is r metres, where

$$
\boldsymbol{r}=2 t^{3} \boldsymbol{i}+50 t^{-\frac{1}{2} \boldsymbol{j}}, \quad t \geq 0
$$

Find:
(a) the speed of P when $t=4$
(b) the acceleration of P as a vector when $t=2$
(c) \mathbf{F} when $t=2$.
a) $96 \mathrm{~ms}^{-1}(2 \mathrm{sf})$
b) $(24 i+6.6 j) m s^{-2}(2 \mathrm{sf})$
c) $(19 \boldsymbol{i}+5.3 \boldsymbol{j}) N(2 \mathrm{sf})$

