8C Part 2 Forced Harmonic Motion

1. A particle P of mass 1.5 kg is moving along the x-axis. At time t the displacement of P from the origin O is x metres and the speed of P is $v \mathrm{~ms}^{-1}$. Three forces act on P, namely a restoring force of $7.5 x \mathrm{~N}$, a resistance to motion of P of magnitude $6 v \mathrm{~N}$ and a force of magnitude $12 \operatorname{sint} N$ acting in the direction $O P$. When $t=0, x=5$ and $\frac{d x}{d t}=2$.
a) Show that $\frac{d^{2} x}{d t^{2}}+4 \frac{d x}{d t}+5 x=8 \sin t$
b) Find x as a function of t
c) Describe the motion when t is large

$$
x=e^{-2 t}(6 \cos t+13 \sin t)+\sin t-\cos t
$$

2. A particle P is attached to end A of a light elastic string $A B$. Initially the particle and the string lie at rest on a smooth horizontal plane. At time $t=0$, the end B of the string is set into motion and moves with constant speed U in the direction $A B$, and the extension in the string is x. Air resistance acting on P is proportional to its speed. The subsequent motion can be modelled by the differential equation:

$$
\frac{d^{2} x}{d t^{2}}+2 k \frac{d x}{d t}+k^{2} x=2 k U
$$

Find an expression for x in terms of U, k and t.

