8C Part 1 Damped Harmonic Motion

1. A particle P of mass 0.5 kg moves in a horizontal straight line. At time t seconds, the displacement of P from a fixed point O, on the line is $x m$ and the velocity of P is $v \mathrm{~ms}^{-1}$. A force of magnitude $8 x N$ acts on P in the direction $P O$. The particle is also subject to a resistance of magnitude $4 v N$. When $t=0, x=1.5$ and P is moving in the direction of x increasing with speed $4 \mathrm{~ms}^{-1}$.
a) Show that $\frac{d^{2} x}{d t^{2}}+8 \frac{d x}{d t}+16 x=0$
b) Find the value of x when $t=1$
2. A particle P hangs freely in equilibrium attached to one end of a light elastic string. The other end of the string is attached to a fixed point A. The particle is pulled down and held at rest in a container of liquid which exerts a resistance on the motion on $P . P$ is then released from rest. While the string remains taut and the particle in the liquid, the motion can be modelled using the equation:

$$
\frac{d^{2} x}{d t^{2}}+6 k \frac{d x}{d t}+5 k^{2} x=0
$$

Where k is a positive real constant.
Find the general solution to the differential equation and state the type of damping the particle is subject to.
3. One end of a light elastic spring is attached to a fixed point A. A particle P is attached to the other end and hangs in equilibrium vertically below A. The particle is pulled vertically down from its equilibrium position and released from rest. A resistance proportional to the speed of P acts on P.

$$
\frac{d^{2} x}{d t^{2}}+2 k \frac{d x}{d t}+2 k^{2} x=0
$$

The equation of motion of P is given as:
Where k is a positive real constant and x is the displacement of P from its equilibrium position.
a) Find the general solution to the differential equation.
b) Find the period of the motion

