8.3) Variable acceleration in one dimension

Worked example

Your turn

A particle is moving in a straight line with acceleration at time t seconds given by

$$
a=\cos 5 \pi t \mathrm{~ms}^{-2}, \quad t \geq 0
$$

The velocity of the particle at time $t=0$ is $\frac{1}{5 \pi} m s^{-1}$. Find:
(a) an expression for the velocity at time t seconds
(b) the maximum speed
(c) the distance travelled in the first 6 seconds.

A particle is moving in a straight line with acceleration at time t seconds given by

$$
a=\cos 2 \pi t \mathrm{~ms}^{-2}, \quad t \geq 0
$$

The velocity of the particle at time $t=0$ is $\frac{1}{2 \pi} m s^{-1}$. Find:
(a) an expression for the velocity at time t seconds
(b) the maximum speed
(c) the distance travelled in the first 3 seconds.
a) $v=\frac{1}{2 \pi} \sin 2 \pi t+\frac{1}{2 \pi} m s^{-1}$
b) $\frac{1}{\pi}=0.32 \mathrm{~ms}^{-1}(2 \mathrm{sf})$
C) $0.48 \mathrm{~m}(2 \mathrm{sf})$

Worked example

Your turn

A particle of mass 12 kg is moving on the positive x-axis. At time t seconds the displacement, s, of the particle from the origin is given by

$$
s=3 t^{\frac{5}{2}}+\frac{e^{-3 t}}{4} \mathrm{~m}, \quad t \geq 0
$$

(a) Find the velocity of the particle when $t=2.5$. Given that the particle is acted on by a single force of variable magnitude $F \mathrm{~N}$ which acts in the direction of the positive x-axis,
(b) Find the value of F when $t=4$

A particle of mass 6 kg is moving on the positive x-axis. At time t seconds the displacement, s, of the particle from the origin is given by

$$
s=2 t^{\frac{3}{2}}+\frac{e^{-2 t}}{3} \mathrm{~m}, \quad t \geq 0
$$

(a) Find the velocity of the particle when $t=1.5$.

Given that the particle is acted on by a single force of variable magnitude $F \mathrm{~N}$ which acts in the direction of the positive x-axis,
(b) Find the value of F when $t=2$
a) $3.6 \mathrm{~ms}^{-1}(2 \mathrm{sf})$
b) $6.5 \mathrm{~N}(2 \mathrm{sf})$

