8B Simple Harmonic Motion

On this side:
Displacement = positive
Acceleration $=$ negative

On this side:
Displacement $=$ negative
Acceleration $=$ positive

$$
\ddot{x}=-w^{2} x
$$

$$
v^{2}=w^{2}\left(a^{2}-x^{2}\right)
$$

$$
x=\operatorname{asin}(w t+C)
$$

$$
\text { Period }=\frac{2 \pi}{w}
$$

1. A particle is moving along a straight line. At time t seconds its displacement, $x m$ from a fixed point O is such that:

$$
\frac{d^{2} x}{d t^{2}}=-4 x
$$

Given that at $t=0, x=1$ and that the particle is moving with velocity $4 \mathrm{~ms}^{-1}$:
a) Find an expression for the particle's displacement after t seconds
b) Determine the maximum displacement of the particle from O.
2. A particle P is attached to the ends of two identical elastic springs. The free ends of the springs are attached to two points A and B. The point C lies between A and B such that $A B C$ is a straight line and $A B \neq B C$. The particle is held at C and then released from rest.
At time t seconds, the displacement of the particle from C is $x \mathrm{~m}$ and its velocity is $v \mathrm{~ms}^{-1}$. The subsequent motion can be described by the differential equation $\ddot{x}=-25 x$.
a) Describe the motion of the particle
b) Given that when $t=0, x=0.4$ and $v=0$, find x as a function of t
c) State the period of the motion and state the maximum speed of P.

