8.2) Using trigonometric identities

Worked example

Your turn

A curve has parametric equations

$$
x=\sin t-2, y=\cos t+3, \quad t \in \mathbb{R}
$$

Find:
a) A Cartesian equation of the curve in the form $y=$ $f(x)$
b) Sketch the curve

A curve has parametric equations

$$
x=\sin t+2, y=\cos t-3, \quad t \in \mathbb{R}
$$

Find:
a) A Cartesian equation of the curve in the form $y=$ $f(x)$
b) Sketch the curve
a) $(x-2)^{2}+(y+3)^{2}=1$
b) Circle, radius 1 , centre $(2,-3)$

Worked example

Your turn

A curve has parametric equations
$x=2 \sin t, y=3 \cos t, t \in \mathbb{R}$
Find a Cartesian equation of the curve in the form $y=f(x)$

A curve has parametric equations

$$
x=3 \sin t, y=2 \cos t, t \in \mathbb{R}
$$

Find a Cartesian equation of the curve in the form $y=f(x)$

$$
\left(\frac{x}{3}\right)^{2}+\left(\frac{y}{2}\right)^{2}=1
$$

Your turn

A curve has parametric equations

$$
x=\cos t, \quad y=\sin 2 t, \quad-\frac{\pi}{2} \leq t \leq \frac{\pi}{2}
$$

Find:
a) A Cartesian equation of the curve in the form $y=$ $f(x)$
b) The valid domain and range of $f(x)$

A curve has parametric equations

$$
x=\sin t, \quad y=\sin 2 t, \quad-\frac{\pi}{2} \leq t \leq \frac{\pi}{2}
$$

Find:
a) A Cartesian equation of the curve in the form $y=$ $f(x)$
b) The valid domain and range of $f(x)$
a) $y=2 x \sqrt{1-x^{2}}$
b) Domain: $-1 \leq x \leq 1$

Range: $-1 \leq f(x) \leq 1$

Your turn

A curve has parametric equations

$$
x=4 \cos t, \quad y=\cos 2 t-1, \quad 0 \leq t \leq \pi
$$

Find a Cartesian equation of the curve in the form $y=f(x),-k \leq x \leq k$, stating the value of the constant k

A curve has parametric equations

$$
x=2 \sin t, \quad y=1-\cos 2 t, \quad-\frac{\pi}{2} \leq t \leq \frac{\pi}{2}
$$

Find a Cartesian equation of the curve in the form $y=f(x),-k \leq x \leq k$, stating the value of the constant k

$$
y=\frac{x^{2}}{2},-2 \leq x \leq 2(k=2)
$$

Your turn

A curve has parametric equations
$x=\cot t+1, \quad y=\operatorname{cosec}^{2} t-3, \quad 0<t<\pi$ Find a Cartesian equation of the curve in the form $y=$ $f(x)$ and state the domain of x for which the curve is defined

A curve has parametric equations

$$
x=\cot t+2, \quad y=\operatorname{cosec}^{2} t-2, \quad 0<t<\pi
$$

Find a Cartesian equation of the curve in the form $y=$ $f(x)$ and state the domain of x for which the curve is defined

$$
y=x^{2}-4 x+3, x \in \mathbb{R}
$$

Your turn

A curve has parametric equations
$x=\sqrt{5} \sin 2 t, \quad y=10 \sin ^{2} t, \quad 0 \leq t<\pi$ Find a Cartesian equation of the curve

A curve has parametric equations

$$
x=\sqrt{3} \sin 2 t, \quad y=4 \cos ^{2} t, \quad 0 \leq t<\pi
$$

Find a Cartesian equation of the curve

$$
x^{2}=3 y\left(1-\frac{y}{4}\right)
$$

Worked example

A curve has parametric equations

$$
x=2 \sin t, \quad y=\sin \left(t+\frac{\pi}{6}\right), \quad-\frac{\pi}{2}<t<\frac{\pi}{2}
$$

Find a Cartesian equation of the curve in the form $y=$ $f(x)$ and state the domain of x for which the curve is defined

Your turn

A curve has parametric equations

$$
x=2 \cos t, \quad y=\sin \left(t-\frac{\pi}{6}\right), \quad 0<t<\pi
$$

Find a Cartesian equation of the curve in the form $y=$ $f(x)$ and state the domain of x for which the curve is defined $y=\frac{1}{4}\left(\sqrt{12-3 x^{2}}-x\right),-2<x<2$

Worked example

Your turn

A curve has parametric equations

$$
x=\tan t, \quad y=5 \sin (t-\pi), \quad 0<t<\frac{\pi}{2}
$$

Find a Cartesian equation of the curve

A curve has parametric equations

$$
x=\tan t, \quad y=4 \sin (t+\pi), \quad 0<t<\frac{\pi}{2}
$$

Find a Cartesian equation of the curve

$$
x=-\frac{y}{\sqrt{16-y^{2}}}
$$

