8.1) Vectors in kinematics

Worked example	Your turn
 A particle starts from the position vector (7i – 2j) m and moves with constant velocity (-3i + j) ms⁻¹. (a) Find the position vector of the particle 2 seconds later. (b) Find the time at which the particle is due north of the origin. 	 A particle starts from the position vector (3i + 7j) m and moves with constant velocity (2i - j) ms⁻¹. (a) Find the position vector of the particle 4 seconds later. (b) Find the time at which the particle is due east of the origin. a) (11i + 3j) ms⁻¹ b) 7 s

Worked example	Your turn
A particle <i>P</i> has velocity $(-i + 5j)$ ms ⁻¹ . The particle moves with constant acceleration $a = (4i + 7j)$ ms ⁻² . Find: (a) the speed of the particle at time $t = 6$ seconds. (b) the bearing on which it is travelling at time $t = 6$ seconds.	A particle <i>P</i> has velocity $(-3i + j) \text{ ms}^{-1}$. The particle moves with constant acceleration $a = (2i + 3j) \text{ ms}^{-2}$. Find: (a) the speed of the particle at time $t = 3$ seconds. (b) the bearing on which it is travelling at time $t = 3$ seconds. a) 10.4 ms ⁻¹ (3 sf) b) 017°

Worked example	Your turn
 An ice skater is skating on a large flat ice rink. At time t = 0 the skater is at a fixed point 0 and is travelling with velocity (-4i - 9j) ms⁻¹. At time t = 5 s the skater is travelling with velocity (-34i + 29j) ms⁻¹. Relative to 0, the skater has position vector s at time t seconds. Modelling the ice skater as a particle with constant acceleration, find: (a) The acceleration of the ice skater (b) An expression for s in terms of t (c) The time at which the skater is directly south-west of 0. 	 An ice skater is skating on a large flat ice rink. At time t = 0 the skater is at a fixed point 0 and is travelling with velocity (2.4i - 0.6j) ms⁻¹. At time t = 20 s the skater is travelling with velocity (-5.6i + 3.4j) ms⁻¹. Relative to 0, the skater has position vector s at time t seconds. Modelling the ice skater as a particle with constant acceleration, find: (a) The acceleration of the ice skater (b) An expression for s in terms of t (c) The time at which the skater is directly north-east of 0.
A second skater travels so that she has position vector $r = (-132i + (6 - 22t)j)$ m relative to 0 at time t . (d) Show that the two skaters will meet.	A second skater travels so that she has position vector r = (1.1t - 6)j m relative to 0 at time t . (d) Show that the two skaters will meet. a) $(-0.4i + 0.2j) ms^{-2}$ b) $((2.4t - 0.2t^2)i + (-0.6t + 0.1t^2)j)m$ c) $t = 10$ s d) Shown: Meet when $t = 12$ s

Worked example	Your turn
A ship <i>S</i> is moving with constant velocity $(2i + 4j) kmh^{-1}$. At time $t = 0$, the position vector of <i>S</i> is $(-3i + 5j) km$. A ship <i>T</i> is moving with constant velocity $(6i + nj) kmh^{-1}$ At time $t = 0$, the position vector of <i>T</i> is $(-15i + 2j) km$. The two ships meet at point <i>P</i> . Find the value of <i>n</i> and the distance <i>OP</i>	A ship <i>S</i> is moving with constant velocity $(3i + 3j) kmh^{-1}$. At time $t = 0$, the position vector of <i>S</i> is $(-4i + 2j) km$. A ship <i>T</i> is moving with constant velocity $(-2i + 3j) km$.
	$n = 3.5, OP = 8.25 \ km$ (3 sf)