8.1) Vectors in kinematics

Your turn

A particle starts from the position vector $(7 \boldsymbol{i}-2 \boldsymbol{j}) \mathrm{m}$ and moves with constant velocity $(-3 \boldsymbol{i}+\boldsymbol{j}) \mathrm{ms}^{-1}$.
(a) Find the position vector of the particle 2 seconds later.
(b) Find the time at which the particle is due north of the origin.

A particle starts from the position vector $(3 \boldsymbol{i}+7 \boldsymbol{j}) \mathrm{m}$ and moves with constant velocity $(2 \boldsymbol{i}-\boldsymbol{j}) \mathrm{ms}^{-1}$.
(a) Find the position vector of the particle 4 seconds later.
(b) Find the time at which the particle is due east of the origin.
a) $(11 \boldsymbol{i}+3 \boldsymbol{j}) m s^{-1}$
b) 7 s

Your turn

A particle P has velocity $(-\boldsymbol{i}+5 \boldsymbol{j}) \mathrm{ms}^{-1}$. The particle moves with constant acceleration $\boldsymbol{a}=(4 \boldsymbol{i}+7 \boldsymbol{j}) \mathrm{ms}^{-2}$. Find:
(a) the speed of the particle at time $t=6$ seconds.
(b) the bearing on which it is travelling at time $t=6$ seconds.

A particle P has velocity $(-3 \boldsymbol{i}+\boldsymbol{j}) \mathrm{ms}^{-1}$. The particle moves with constant acceleration $\boldsymbol{a}=(2 \boldsymbol{i}+3 \boldsymbol{j}) \mathrm{ms}^{-2}$. Find:
(a) the speed of the particle at time $t=3$ seconds.
(b) the bearing on which it is travelling at time $t=3$ seconds.
a) $10.4 \mathrm{~ms}^{-1}(3 \mathrm{sf})$
b) 017°

Worked example

Your turn

An ice skater is skating on a large flat ice rink. At time $t=$ 0 the skater is at a fixed point O and is travelling with velocity $(-4 \boldsymbol{i}-9 \boldsymbol{j}) m s^{-1}$.
At time $t=5 \mathrm{~s}$ the skater is travelling with velocity $(-34 \boldsymbol{i}+29 \boldsymbol{j}) m s^{-1}$.
Relative to O, the skater has position vector \boldsymbol{s} at time t seconds.
Modelling the ice skater as a particle with constant acceleration, find:
(a) The acceleration of the ice skater
(b) An expression for \boldsymbol{s} in terms of t
(c) The time at which the skater is directly south-west of O.

A second skater travels so that she has position vector $\boldsymbol{r}=(-132 \boldsymbol{i}+(6-22 t) \boldsymbol{j}) \mathrm{m}$ relative to O at time t.
(d) Show that the two skaters will meet.

An ice skater is skating on a large flat ice rink. At time $t=$ 0 the skater is at a fixed point O and is travelling with velocity ($2.4 \boldsymbol{i}-0.6 \boldsymbol{j}$) ms^{-1}.
At time $t=20 \mathrm{~s}$ the skater is travelling with velocity
$(-5.6 \boldsymbol{i}+3.4 \boldsymbol{j}) \mathrm{ms}^{-1}$.
Relative to O, the skater has position vector \boldsymbol{s} at time t seconds.
Modelling the ice skater as a particle with constant acceleration, find:
(a) The acceleration of the ice skater
(b) An expression for \boldsymbol{s} in terms of t
(c) The time at which the skater is directly north-east of 0 .

A second skater travels so that she has position vector $\boldsymbol{r}=(1.1 t-6) j$ m relative to O at time t.
(d) Show that the two skaters will meet.
a) $(-0.4 \boldsymbol{i}+0.2 \boldsymbol{j}) \mathrm{ms}^{-2}$
b) $\left(\left(2.4 t-0.2 t^{2}\right) \boldsymbol{i}+\left(-0.6 t+0.1 t^{2}\right) \boldsymbol{j}\right) m$
c) $t=10 \mathrm{~s}$
d) Shown: Meet when $t=12 \mathrm{~s}$

Your turn

A ship S is moving with constant velocity $(2 \boldsymbol{i}+4 \boldsymbol{j}) \mathrm{kmh}^{-1}$. At time $t=0$, the position vector of S is $(-3 \boldsymbol{i}+5 \boldsymbol{j}) \mathrm{km}$. A ship T is moving with constant velocity $(6 \boldsymbol{i}+n \boldsymbol{j}) \mathrm{kmh}^{-1}$ At time $t=0$, the position vector of T is $(-15 \boldsymbol{i}+2 \boldsymbol{j}) \mathrm{km}$. The two ships meet at point P. Find the value of n and the distance $O P$

A ship S is moving with constant velocity $(3 \boldsymbol{i}+3 \boldsymbol{j}) k m h^{-1}$. At time $t=0$, the position vector of S is $(-4 \boldsymbol{i}+2 \boldsymbol{j}) \mathrm{km}$. A ship T is moving with constant velocity ($-2 \boldsymbol{i}+$

$$
n=3.5, O P=8.25 \mathrm{~km}(3 \mathrm{sf})
$$

