8A Modelling with First Order Differentials

1. A particle P starts from rest at a given point O and moves along a straight line. At time t seconds, the acceleration, $a \mathrm{~ms}^{-2}$, of P is given by:

$$
a=\frac{6}{(t-2)^{2}}, t \geq 0
$$

a) Find the velocity of P at time t seconds
b) Show that the displacement of P from O when $t=6$ is given by $(18-12 \ln 2) m$
2. A particle P is travelling along a straight line. At time t seconds, the acceleration of the particle is given by:

$$
a=t+\frac{3}{t} v, t \geq 0
$$

Given that $v=0$ when $t=2$, show that the velocity of the particle at time t is given by the equation:

$$
v=c t^{3}-t^{2}
$$

where c is a constant to be found.
3. A storage tank initially contains 1000 litres of pure water. Liquid is removed from the tank at a constant rate of 30 litres per hour and a chemical solution is added at a constant rate of 40 litres per hour. The chemical solution contains 4 grams of copper sulphate per litre of water.
a) Given that there are x grams of copper sulphate in the tank after t hours and that the copper sulphate immediately disperses throughout the tank upon entry, show that the situation can be modelled by the differential equation:

$$
\frac{d x}{d t}=160-\frac{3 x}{100+t}, t \geq 0
$$

b) Hence, find the number of grams of copper sulphate in the tank after 6 hours.
c) Suggest a possible refinement for the model

