8.1) Pascal's triangle

Use Pascal's triangle to find the expansion of

$$
(x+4 y)^{5}
$$

Use Pascal's triangle to find the expansion of

$$
\begin{gathered}
(x+2 y)^{3} \\
x^{3}+6 x^{2} y+12 x y^{2}+8 y^{3}
\end{gathered}
$$

Your turn

Use Pascal's triangle to find the expansion of Use Pascal's triangle to find the expansion of
$(5 x-2)^{4}$

$$
\begin{gathered}
(2 x-5)^{4} \\
16 x^{4}-160 x^{3}+600 x^{2}-1000 x+625
\end{gathered}
$$

Your turn

Find the expansion of $(2+3 x)^{4}$

$$
16+96 x+216 x^{2}+216 x^{3}+81 x^{4}
$$

Your turn

Find the expansion of $(1-4 x)^{3}$
Find the expansion of $(1-2 x)^{3}$

$$
1-6 x+12 x^{2}-8 x^{3}
$$

Your turn

The coefficient of x^{2} in the expansion of $(2-c x)^{3}$ is 294 .
Find the possible value(s) of the constant c.

The coefficient of x^{2} in the expansion of $(2-c x)^{5}$ is 720 .
Find the possible value(s) of the constant c.

$$
c= \pm 3
$$

Your turn

The coefficient of x^{3} in the expansion of
The coefficient of x^{3} in the expansion of $(2-c x)^{5}$ is -1080 .
Find the possible value(s) of the constant c.

$$
c=3
$$

Your turn

In the binomial expansion of $(3+k x)^{7}$, where k is a constant, the coefficient of x^{2} is 2 times the coefficient of x. Find the value of k

In the binomial expansion of $(2+k x)^{7}$, where k is a constant, the coefficient of x^{2} is 6 times the coefficient of x. Find the value of k

$$
k=4
$$

