8.1) Parametric equations

Worked example	Your turn
A curve has parametric equations $x = 3t$, $y = t^2$, $-4 < t < 4$ Find: a) A Cartesian equation of the curve in the form $y = f(x)$ b) The domain and range of $f(x)$ c) Sketch the curve	A curve has parametric equations $x = 2t$, $y = t^2$, $-3 < t < 3$ Find: a) A Cartesian equation of the curve in the form $y = f(x)$ b) The domain and range of $f(x)$ c) Sketch the curve a) $y = \frac{x^2}{4}$ b) Domain: $-6 < x < 6$ Range: $0 \le f(x) < 9$ c) c) c) c) c) c) c) c) c) c)

Graphs used with permission from DESMOS: <u>https://www.desmos.com/</u>

Worked example

A curve has parametric equations

$$x = \ln(t+5)$$
, $y = \frac{1}{t+7}$, $t > -4$

Find:

- a) A Cartesian equation of the curve in the form y = f(x)
- b) The domain and range of f(x)

Your turn

A curve has parametric equations

$$x = \ln(t+3)$$
, $y = \frac{1}{t+5}$, $t > -2$

Find:

- a) A Cartesian equation of the curve in the form y = f(x)
- b) The domain and range of f(x)

a)
$$y = \frac{1}{e^{x}+2}$$

b) Domain: $x > 0$
Range: $0 < f(x) < \frac{1}{3}$

Worked example	Your turn
A curve has parametric equations $x = \ln t$, $y = t^3 - 4$, $t > 0$ Find: a) A Cartesian equation of the curve in the form $y = f(x)$ b) The domain and range of $f(x)$	A curve has parametric equations $x = \ln t$, $y = t^2 - 1$, $t > 0$ Find: a) A Cartesian equation of the curve in the form $y = f(x)$ b) The domain and range of $f(x)$ a) $y = e^{2x} - 1$ b) Domain: $x \in \mathbb{R}$ Range: $f(x) > -1$

Worked example

A curve has parametric equations

$$x = \frac{3t}{1-t}, \qquad y = 5t + \frac{2}{t},$$

Show that the Cartesian equation of the curve is

$$y = \frac{ax^2 + bx + c}{x(x+3)}$$

where *a*, *b* and *c* are constants to be found.

Your turn

A curve has parametric equations $x = \frac{5t}{1-t}, \quad y = 2t + \frac{3}{t},$ Show that the Cartesian equation of the curve is $y = \frac{ax^2 + bx + c}{x(x+5)}$ where *a*, *b* and *c* are constants to be found.

> Shown a = 5, b = 30, c = 75