8.1) Parametric equations

Your turn

A curve has parametric equations

$$
x=3 t, \quad y=t^{2}, \quad-4<t<4
$$

Find:
a) A Cartesian equation of the curve in the form $y=$ $f(x)$
b) The domain and range of $f(x)$
c) Sketch the curve

A curve has parametric equations

$$
x=2 t, \quad y=t^{2}, \quad-3<t<3
$$

Find:
a) A Cartesian equation of the curve in the form $y=$ $f(x)$
b) The domain and range of $f(x)$
c) Sketch the curve
a) $y=\frac{x^{2}}{4}$
b) Domain: $-6<x<6$ Range: $0 \leq f(x)<9$
c)

Your turn

A curve has parametric equations

$$
x=\ln (t+5), \quad y=\frac{1}{t+7}, \quad t>-4
$$

Find:
a) A Cartesian equation of the curve in the form $y=$ $f(x)$
b) The domain and range of $f(x)$

A curve has parametric equations

$$
x=\ln (t+3), \quad y=\frac{1}{t+5}, \quad t>-2
$$

Find:
a) A Cartesian equation of the curve in the form $y=$ $f(x)$
b) The domain and range of $f(x)$
a) $y=\frac{1}{e^{x}+2}$
b) Domain: $x>0$

Range: $0<f(x)<\frac{1}{3}$

Your turn

A curve has parametric equations

$$
x=\ln t, \quad y=t^{3}-4, \quad t>0
$$

Find:
a) A Cartesian equation of the curve in the form $y=$ $f(x)$
b) The domain and range of $f(x)$

A curve has parametric equations

$$
x=\ln t, \quad y=t^{2}-1, \quad t>0
$$

Find:
a) A Cartesian equation of the curve in the form $y=$ $f(x)$
b) The domain and range of $f(x)$
a) $y=e^{2 x}-1$
b) Domain: $x \in \mathbb{R}$

Range: $f(x)>-1$

Worked example

Your turn

A curve has parametric equations

$$
x=\frac{3 t}{1-t}, \quad y=5 t+\frac{2}{t}
$$

Show that the Cartesian equation of the curve is

$$
y=\frac{a x^{2}+b x+c}{x(x+3)}
$$

where a, b and c are constants to be found.

A curve has parametric equations

$$
x=\frac{5 t}{1-t}, \quad y=2 t+\frac{3}{t}
$$

Show that the Cartesian equation of the curve is

$$
y=\frac{a x^{2}+b x+c}{x(x+5)}
$$

where a, b and c are constants to be found.
Shown
$a=5, b=30, c=75$

