8.1) Constructing a model

Worked example	Your turn
A stone is thrown from the top of a cliff into the sea. The height of the stone above sea level, h m, at time t seconds after it is thrown can be modelled using the equation $h = -5t^2 + 15t + 90$	A basketball is thrown into a net. The height of the basketball above the ground can be modelled using the equation $h = 2 + 1.1x - 0.1x^2$, where x m is the horizontal distance travelled.
 a) Find the height of the stone above sea level: i) When it is released ii) 8 seconds after it is thrown b) Use the model to predict the height of the stone above sea level after 20 seconds. c) Comment on the validity of this prediction. d) The model is only valid from the time the stone is thrown until the time it enters the sea. Find the range of values of t for which the model is valid. 	 a) Find the height of the basketball: i) When it is released ii) At a horizontal distance of 0.5 m b) Use the model to predict the height of the basketball when it is at a horizontal distance of 15 m from the player. c) Comment on the validity of this prediction. d) The model is only valid when the balls is above the ground. Find the range of values of <i>x</i> for which the model is valid. a) i) 2 m ii) 2.525 m
	 b) -4 m c) Height cannot be negative, so the model is not
	valid when $x = 15 \text{ m}$ d) $0.00 \le x < 12.59 (2 \text{ dp})$