8) The binomial expansion

8.1) Pascal's triangle
8.2) Factorial notation
8.3) The binomial expansion
8.4) Solving binomial problems
8.5) Binomial estimation

Use Pascal's triangle to find the expansion of

$$
(x+4 y)^{5}
$$

Use Pascal's triangle to find the expansion of

$$
\begin{gathered}
(x+2 y)^{3} \\
x^{3}+6 x^{2} y+12 x y^{2}+8 y^{3}
\end{gathered}
$$

Your turn

Use Pascal's triangle to find the expansion of Use Pascal's triangle to find the expansion of
$(5 x-2)^{4}$

$$
\begin{gathered}
(2 x-5)^{4} \\
16 x^{4}-160 x^{3}+600 x^{2}-1000 x+625
\end{gathered}
$$

Your turn

Find the expansion of $(2+3 x)^{4}$

$$
16+96 x+216 x^{2}+216 x^{3}+81 x^{4}
$$

Your turn

Find the expansion of $(1-4 x)^{3}$
Find the expansion of $(1-2 x)^{3}$

$$
1-6 x+12 x^{2}-8 x^{3}
$$

Your turn

The coefficient of x^{2} in the expansion of $(2-c x)^{3}$ is 294 .
Find the possible value(s) of the constant c.

The coefficient of x^{2} in the expansion of $(2-c x)^{5}$ is 720 .
Find the possible value(s) of the constant c.

$$
c= \pm 3
$$

Your turn

The coefficient of x^{3} in the expansion of
The coefficient of x^{3} in the expansion of $(2-c x)^{5}$ is -1080 .
Find the possible value(s) of the constant c.

$$
c=3
$$

Your turn

In the binomial expansion of $(3+k x)^{7}$, where k is a constant, the coefficient of x^{2} is 2 times the coefficient of x. Find the value of k

In the binomial expansion of $(2+k x)^{7}$, where k is a constant, the coefficient of x^{2} is 6 times the coefficient of x. Find the value of k

$$
k=4
$$

8.2) Factorial notation

Your turn

Find the number of different ways of arranging the letters $A B C D$

Find the number of different ways of arranging the letters $A B C D E$

$$
5!=120
$$

Your turn

Find the number of ways of a football coach choosing 11 starting players from a squad of 18

Find the number of ways of a netball coach choosing 7 starting players from a squad of 12

$$
\frac{12!}{7!5!}=792
$$

Worked example	Your turn
Using factorials, evaluate:	Using factorials, evaluate:
$1!$	$0!$
1	
$\binom{10}{0}$	$\binom{20}{1}$
20	
190	

8.3) The binomial expansion

Your turn

Use the binomial theorem to find the expansion of $(2-3 x)^{5}$

Use the binomial theorem to find the expansion of $(3-2 x)^{5}$

$$
243-810 x+1080 x^{2}-720 x^{3}+240 x^{4}-32 x^{5}
$$

Your turn

Find the first four terms in ascending powers of x in the binomial expansion of
$(1+3 x)^{11}$

Find the first four terms in ascending powers of x in the binomial expansion of

$$
\begin{gathered}
(1+2 x)^{10} \\
1+20 x+180 x^{2}+960 x^{3}+\cdots
\end{gathered}
$$

Find the first four terms in ascending powers of x in the binomial expansion of

$$
\left(6-\frac{1}{3} x\right)^{10}
$$

Find the first four terms in ascending powers of x in the binomial expansion of $\left(10-\frac{1}{2} x\right)^{6}$

$$
1000000-300000 x+37500 x^{2}-2500 x^{3}+\cdots
$$

Your turn

Find the first 3 terms in the expansion of $\left(3-\frac{1}{2} x\right)^{5}$, in ascending powers of x.

Find the first 3 terms in the expansion of
$\left(2-\frac{1}{3} x\right)^{7}$, in ascending powers of x.

$$
128-\frac{448}{3} x+\frac{224}{3} x^{2}+\cdots
$$

Your turn

Find the binomial expansion of $\left(x+\frac{1}{x}\right)^{7}$ giving each term in its simplest form

Find the binomial expansion of $\left(x+\frac{1}{x}\right)^{5}$ giving each term in its simplest form

$$
x^{5}+5 x^{3}+10 x+\frac{10}{x}+\frac{5}{x^{3}}+\frac{1}{x^{5}}
$$

Your turn

Find the coefficient of x^{6} in the binomial expansion of $(3+2 x)^{10}$

Find the coefficient of x^{4} in the binomial expansion of $(2+3 x)^{10}$

1088640

Your turn

Find the coefficient of x^{3} in the binomial expansion of $(3+x)(2-3 x)^{7}$

Find the coefficient of x^{3} in the binomial expansion of $(2+x)(3-2 x)^{7}$
-24948

Your turn

The coefficient of x^{6} in the expansion of
The coefficient of x^{4} in the expansion of $(1+q x)^{10}$ is 3360 . Find the possible value(s) of the constant q.

$$
q= \pm 2
$$

Your turn

In the expansion of $(1+a x)^{8}$, where a is a non-zero constant the coefficient of x^{3} is quadruple the coefficient of x^{2}. Find the value of a.

In the expansion of $(1+a x)^{10}$, where a is a non-zero constant the coefficient of x^{3} is double the coefficient of x^{2}. Find the value of a.

$$
a=\frac{3}{4}
$$

Given that, in the expansion of $(1+q x)^{8}$, the coefficient of x is $-r$ and the coefficient of x^{2} is $14 r$, find the value of q and the value of r

Given that, in the expansion of
$(1+q x)^{8}$, the coefficient of x is $-r$ and the coefficient of x^{2} is $7 r$, find the value of q and the value of r

$$
q=-2, r=16
$$

In the binomial expansion of $(1+x)^{40}$, the coefficients of x^{19} and x^{20} are p and q respectively. Find the value of $\frac{q}{p}$

In the binomial expansion of $(1+x)^{20}$, the coefficients of x^{9} and x^{11} are p and q respectively. Find the value of $\frac{q}{p}$

8.5) Binomial estimation

Your turn

a) Find the first four terms of the binomial expansion, in ascending powers of x, of

$$
\left(1+\frac{x}{2}\right)^{10}
$$

b) Use your expansion to estimate the value of 1.052^{10}, giving your answer to 4 decimal places
a) Find the first four terms of the binomial expansion, in ascending powers of x, of

$$
\left(1+\frac{x}{4}\right)^{8}
$$

b) Use your expansion to estimate the value of 1.025^{8}, giving your answer to 4 decimal places
a) $1+2 x+\frac{7}{4} x^{2}+\frac{7}{8} x^{3}+\cdots$
b) 1.2184 (4 dp)

Your turn

a) Find the first four terms of the binomial expansion, in ascending powers of x, of

$$
\left(1-\frac{x}{2}\right)^{8}
$$

b) Use your expansion to estimate the value of 0.957^{8}, giving your answer to 4 decimal places
a) Find the first four terms of the binomial expansion, in ascending powers of x, of

$$
\left(1-\frac{x}{4}\right)^{10}
$$

b) Use your expansion to estimate the value of
$0.975{ }^{10}$, giving your answer to 4 decimal places
a) $1-\frac{5}{2} x+\frac{45}{16} x^{2}--\frac{15}{8} x^{3}+\cdots$
b) $0.7763(4 \mathrm{dp})$

Your turn

a) Find the first three terms of the binomial expansion, in ascending powers of x, of

$$
\left(5-\frac{x}{7}\right)^{6}
$$

b) Use your expansion to estimate the value of 4.996^{9}, giving your answer to 4 significant figures
a) Find the first three terms of the binomial expansion, in ascending powers of x, of

$$
\left(7-\frac{x}{5}\right)^{9}
$$

b) Use your expansion to estimate the value of
6.991^{8}, giving your answer to 4 significant figures
a) $40353607-\frac{51883209}{5} x+\frac{29647548}{25} x^{2}+\cdots$
b) 39890000

Your turn

a) Find the first three terms of the binomial expansion, in ascending powers of x, of

$$
\left(1-\frac{x}{3}\right)^{8}
$$

b) Use your expansion to estimate the value of 0.96^{8}, giving your answer to 5 decimal places
a) Find the first four terms of the binomial expansion, in ascending powers of x, of

$$
\left(1-\frac{x}{4}\right)^{8}
$$

b) Use your expansion to estimate the value of
0.96^{8}, giving your answer to 5 decimal places
a) $1-2 x+\frac{7}{4} x^{2}-\frac{7}{8} x^{3}+\cdots$
b) 0.72122

