8) Parametric equations

8.1) Parametric equations
8.2) Using trigonometric identities
8.3) Curve sketching
8.4) Points of intersection
8.5) Modelling with parametric equations

8.1) Parametric equations

Your turn

A curve has parametric equations

$$
x=3 t, \quad y=t^{2}, \quad-4<t<4
$$

Find:
a) A Cartesian equation of the curve in the form $y=$ $f(x)$
b) The domain and range of $f(x)$
c) Sketch the curve

A curve has parametric equations

$$
x=2 t, \quad y=t^{2}, \quad-3<t<3
$$

Find:
a) A Cartesian equation of the curve in the form $y=$ $f(x)$
b) The domain and range of $f(x)$
c) Sketch the curve
a) $y=\frac{x^{2}}{4}$
b) Domain: $-6<x<6$ Range: $0 \leq f(x)<9$
c)

Your turn

A curve has parametric equations

$$
x=\ln (t+5), \quad y=\frac{1}{t+7}, \quad t>-4
$$

Find:
a) A Cartesian equation of the curve in the form $y=$ $f(x)$
b) The domain and range of $f(x)$

A curve has parametric equations

$$
x=\ln (t+3), \quad y=\frac{1}{t+5}, \quad t>-2
$$

Find:
a) A Cartesian equation of the curve in the form $y=$ $f(x)$
b) The domain and range of $f(x)$
a) $y=\frac{1}{e^{x}+2}$
b) Domain: $x>0$

Range: $0<f(x)<\frac{1}{3}$

Your turn

A curve has parametric equations

$$
x=\ln t, \quad y=t^{3}-4, \quad t>0
$$

Find:
a) A Cartesian equation of the curve in the form $y=$ $f(x)$
b) The domain and range of $f(x)$

A curve has parametric equations

$$
x=\ln t, \quad y=t^{2}-1, \quad t>0
$$

Find:
a) A Cartesian equation of the curve in the form $y=$ $f(x)$
b) The domain and range of $f(x)$
a) $y=e^{2 x}-1$
b) Domain: $x \in \mathbb{R}$

Range: $f(x)>-1$

Worked example

Your turn

A curve has parametric equations

$$
x=\frac{3 t}{1-t}, \quad y=5 t+\frac{2}{t}
$$

Show that the Cartesian equation of the curve is

$$
y=\frac{a x^{2}+b x+c}{x(x+3)}
$$

where a, b and c are constants to be found.

A curve has parametric equations

$$
x=\frac{5 t}{1-t}, \quad y=2 t+\frac{3}{t}
$$

Show that the Cartesian equation of the curve is

$$
y=\frac{a x^{2}+b x+c}{x(x+5)}
$$

where a, b and c are constants to be found.
Shown
$a=5, b=30, c=75$

8.2) Using trigonometric identities Chapter CONTENTS

Worked example

Your turn

A curve has parametric equations

$$
x=\sin t-2, y=\cos t+3, \quad t \in \mathbb{R}
$$

Find:
a) A Cartesian equation of the curve in the form $y=$ $f(x)$
b) Sketch the curve

A curve has parametric equations

$$
x=\sin t+2, y=\cos t-3, \quad t \in \mathbb{R}
$$

Find:
a) A Cartesian equation of the curve in the form $y=$ $f(x)$
b) Sketch the curve
a) $(x-2)^{2}+(y+3)^{2}=1$
b) Circle, radius 1 , centre $(2,-3)$

Worked example

Your turn

A curve has parametric equations
$x=2 \sin t, y=3 \cos t, t \in \mathbb{R}$
Find a Cartesian equation of the curve in the form $y=f(x)$

A curve has parametric equations

$$
x=3 \sin t, y=2 \cos t, t \in \mathbb{R}
$$

Find a Cartesian equation of the curve in the form $y=f(x)$

$$
\left(\frac{x}{3}\right)^{2}+\left(\frac{y}{2}\right)^{2}=1
$$

Your turn

A curve has parametric equations

$$
x=\cos t, \quad y=\sin 2 t, \quad-\frac{\pi}{2} \leq t \leq \frac{\pi}{2}
$$

Find:
a) A Cartesian equation of the curve in the form $y=$ $f(x)$
b) The valid domain and range of $f(x)$

A curve has parametric equations

$$
x=\sin t, \quad y=\sin 2 t, \quad-\frac{\pi}{2} \leq t \leq \frac{\pi}{2}
$$

Find:
a) A Cartesian equation of the curve in the form $y=$ $f(x)$
b) The valid domain and range of $f(x)$
a) $y=2 x \sqrt{1-x^{2}}$
b) Domain: $-1 \leq x \leq 1$

Range: $-1 \leq f(x) \leq 1$

Your turn

A curve has parametric equations

$$
x=4 \cos t, \quad y=\cos 2 t-1, \quad 0 \leq t \leq \pi
$$

Find a Cartesian equation of the curve in the form $y=f(x),-k \leq x \leq k$, stating the value of the constant k

A curve has parametric equations

$$
x=2 \sin t, \quad y=1-\cos 2 t, \quad-\frac{\pi}{2} \leq t \leq \frac{\pi}{2}
$$

Find a Cartesian equation of the curve in the form $y=f(x),-k \leq x \leq k$, stating the value of the constant k

$$
y=\frac{x^{2}}{2},-2 \leq x \leq 2(k=2)
$$

Your turn

A curve has parametric equations
$x=\cot t+1, \quad y=\operatorname{cosec}^{2} t-3, \quad 0<t<\pi$ Find a Cartesian equation of the curve in the form $y=$ $f(x)$ and state the domain of x for which the curve is defined

A curve has parametric equations

$$
x=\cot t+2, \quad y=\operatorname{cosec}^{2} t-2, \quad 0<t<\pi
$$

Find a Cartesian equation of the curve in the form $y=$ $f(x)$ and state the domain of x for which the curve is defined

$$
y=x^{2}-4 x+3, x \in \mathbb{R}
$$

Your turn

A curve has parametric equations
$x=\sqrt{5} \sin 2 t, \quad y=10 \sin ^{2} t, \quad 0 \leq t<\pi$ Find a Cartesian equation of the curve

A curve has parametric equations

$$
x=\sqrt{3} \sin 2 t, \quad y=4 \cos ^{2} t, \quad 0 \leq t<\pi
$$

Find a Cartesian equation of the curve

$$
x^{2}=3 y\left(1-\frac{y}{4}\right)
$$

Worked example

A curve has parametric equations

$$
x=2 \sin t, \quad y=\sin \left(t+\frac{\pi}{6}\right), \quad-\frac{\pi}{2}<t<\frac{\pi}{2}
$$

Find a Cartesian equation of the curve in the form $y=$ $f(x)$ and state the domain of x for which the curve is defined

Your turn

A curve has parametric equations

$$
x=2 \cos t, \quad y=\sin \left(t-\frac{\pi}{6}\right), \quad 0<t<\pi
$$

Find a Cartesian equation of the curve in the form $y=$ $f(x)$ and state the domain of x for which the curve is defined $y=\frac{1}{4}\left(\sqrt{12-3 x^{2}}-x\right),-2<x<2$

Worked example

Your turn

A curve has parametric equations

$$
x=\tan t, \quad y=5 \sin (t-\pi), \quad 0<t<\frac{\pi}{2}
$$

Find a Cartesian equation of the curve

A curve has parametric equations

$$
x=\tan t, \quad y=4 \sin (t+\pi), \quad 0<t<\frac{\pi}{2}
$$

Find a Cartesian equation of the curve

$$
x=-\frac{y}{\sqrt{16-y^{2}}}
$$

Your turn

Draw the curve given by the parametric equations
$x=3 t, \quad y=t^{2}, \quad-5 \leq t \leq 1$

Draw the curve given by the parametric equations

$$
\begin{gathered}
x=2 t, \quad y=t^{2}, \quad-1 \leq t \leq 5 \\
y=\frac{x^{2}}{4},-2 \leq x \leq 10
\end{gathered}
$$

Your turn

Draw the curve given by the parametric equations

$$
x=2-t, \quad y=t^{2}-3, \quad-3 \leq t \leq 2
$$

Draw the curve given by the parametric equations

$$
x=3-t, \quad y=t^{2}+2, \quad-2 \leq t \leq 3
$$

$$
y=x^{2}-6 x+11,0 \leq x \leq 5
$$

Worked example

Your turn

Draw the curve given by the parametric equations $x=2 \cos t-3, \quad y=4 \sin t, \quad 0 \leq t \leq 2 \pi$

Draw the curve given by the parametric equations $x=3 \cos t+4, \quad y=2 \sin t, \quad 0 \leq t \leq 2 \pi$

$$
\left(\frac{x-4}{3}\right)^{2}+\left(\frac{y}{2}\right)^{2}=1, \quad 1 \leq x \leq 7
$$

Your turn

A curve C is given by the parametric equations $x=a t^{2}+t, \quad y=a\left(t^{3}+27\right), \quad t \in \mathbb{R}$, where a is a non-zero constant. Given that C passes through the point $(-6,0)$, a) find the value of a.
b) find the coordinates of the points A and B where the curve crosses the y-axis.

A curve C is given by the parametric equations $x=a t^{2}+t, \quad y=a\left(t^{3}+8\right), \quad t \in \mathbb{R}$, where a is a non-zero constant.
Given that C passes through the point $(-4,0)$,
a) find the value of a.
b) find the coordinates of the points A and B where the curve crosses the y-axis.
a) $a=-\frac{1}{2}$
b) $(0,-4)$ and $(0,-8)$

Worked example

Your turn

A curve C is given by the parametric equations

$$
x=t^{2}, y=2 t, \quad t \in \mathbb{R}
$$

Find the coordinates of the point(s) of intersection between the curve C and the line $x+y-8=0$

A curve C is given by the parametric equations

$$
x=t^{2}, y=4 t, t \in \mathbb{R}
$$

Find the coordinates of the point(s) of intersection between the curve C and the line $x+y+4=0$

Your turn

A curve C is given by the parametric equations

$$
x=\cos t-\sin t, \quad y=\left(t+\frac{\pi}{6}\right)^{2}, \quad-\frac{\pi}{3}<t<\frac{3 \pi}{2}
$$

a) Find the point where the curve intersects the line $y=\pi^{2}$.
b) Find the coordinates of the points where the curve cuts the y-axis.

A curve C is given by the parametric equations

$$
x=\cos t+\sin t, \quad y=\left(t-\frac{\pi}{6}\right)^{2}, \quad-\frac{\pi}{2}<t<\frac{4 \pi}{3}
$$

a) Find the point where the curve intersects the line $y=\pi^{2}$.
b) Find the coordinates of the points where the curve cuts the y-axis.
a) $\left(-\frac{1+\sqrt{3}}{2}, \pi^{2}\right)$
b) $\left(0, \frac{25 \pi^{2}}{144}\right)$ and $\left(0, \frac{49 \pi^{2}}{144}\right)$

Your turn

A curve C is given by the parametric equations

$$
x=1-\frac{1}{3} t, \quad y=3^{t}-1, \quad t \in \mathbb{R}
$$

Find the coordinates of the x and y intercepts
A curve C is given by the parametric equations

$$
x=1-\frac{1}{2} t, \quad y=2^{t}-1, \quad t \in \mathbb{R}
$$

Find the coordinates of the x and y intercepts

$$
(0,3) \text { and }(1,0)
$$

Worked example

Your turn

A curve C is given by the parametric equations

$$
x=e^{3 t}, \quad y=e^{t}+1, \quad t \in \mathbb{R}
$$

A straight line l passes through the points A and B where $t=\ln 3$ and $t=\ln 4$ respectively. Find an equation for l in the form $a x+b y+c=0$

A curve C is given by the parametric equations

$$
x=e^{2 t}, \quad y=e^{t}-1, \quad t \in \mathbb{R}
$$

A straight line l passes through the points A and B where $t=\ln 2$ and $t=\ln 3$ respectively.
Find an equation for l in the form $a x+b y+c=0$

$$
x-5 y+1=0
$$

8.5) Modelling with parametric equations Chapter CONTENTS

Worked example

Your turn

A plane's position at time t seconds after take-off can be modelled with the following parametric equations:

$$
x=(v \cos \theta) t \mathrm{~m}, \quad y=(v \sin \theta) t \mathrm{~m}, \quad t>0
$$

where v is the speed of the plane, θ is the angle of elevation of its path, x is the horizontal distance travelled and y is the vertical distance travelled, relative to a fixed origin.
When the plane has travelled 500m horizontally, it has climbed 125 m .
Given that the plane's speed is $40 \mathrm{~m} \mathrm{~s}^{-1}$
a) find the parametric equations for the plane's motion.
b) find the vertical height of the plane after 20 seconds.
c) show that the plane's motion is a straight line.
d) explain why the domain of $t, t>0$, is not realistic.

A plane's position at time t seconds after take-off can be modelled with the following parametric equations:

$$
x=(v \cos \theta) t \mathrm{~m}, \quad y=(v \sin \theta) t \mathrm{~m}, \quad t>0
$$

where v is the speed of the plane, θ is the angle of elevation of its path, x is the horizontal distance travelled and y is the vertical distance travelled, relative to a fixed origin.
When the plane has travelled 600 m horizontally, it has climbed 120m.
Given that the plane's speed is $50 \mathrm{~m} \mathrm{~s}^{-1}$,
a) find the parametric equations for the plane's motion.
b) find the vertical height of the plane after 10 seconds.
c) show that the plane's motion is a straight line.
a) $x=49.0 t, \mathrm{y}=9.80 \mathrm{t}(3 \mathrm{sf})$
b) 98 m
c) $y=\frac{1}{5} x$ which is linear

Worked example

Your turn

The motion of a figure skater relative to a fixed origin, O, at time t minutes is modelled using the parametric equations

$$
x=4 \cos 10 t, \quad y=6 \sin \left(5 t-\frac{\pi}{3}\right), \quad t \geq 0
$$

where x and y are measured in metres.
a) Find the coordinates of the figure skater at the beginning of his motion.
b) Find the coordinates of the point where the figure skater intersects his own path.
c) Find the coordinates of the points where the path of the figure skater crosses the y-axis.
d) Determine how long it takes the figure skater to complete one complete figure-of-eight motion.

The motion of a figure skater relative to a fixed origin, O, at time t minutes is modelled using the parametric equations

$$
x=8 \cos 20 t, \quad y=12 \sin \left(10 t-\frac{\pi}{3}\right), \quad t \geq 0
$$

where x and y are measured in metres.
a) Find the coordinates of the figure skater at the beginning of his motion.
b) Find the coordinates of the point where the figure skater intersects his own path.
c) Find the coordinates of the points where the path of the figure skater crosses the y-axis.
d) Determine how long it takes the figure skater to complete one complete figure-of-eight motion.

a) $t=0, x=8, y=-6 \sqrt{3}$
b) $(-4,0)$
c) $(0,-3.11),(0,11.59),(0,3.11),(0,-11.59)$ (2
dp)
d) $\frac{\pi}{5}$ minutes $=37.7$ seconds (1 dp)

Worked example

Your turn

A stone is thrown from the top of a 50 m high cliff with an initial speed of $5 \mathrm{~ms}^{-1}$ at an angle of 30° above the horizontal. Its position after t seconds can be described using the parametric equations

$$
x=\frac{5 \sqrt{3}}{2} t m, \quad y=\left(-4.9 t^{2}+\frac{5 \sqrt{3}}{2} t+50\right) m, \quad 0 \leq t \leq k
$$

where x is the horizontal distance, y is the vertical distance from the ground and k is a constant.
Given that the model is valid from the time the stone is thrown to the time it hits the ground,
a) find the value of k
b) find the horizontal distance travelled by the stone once it hits the ground

A stone is thrown from the top of a 25 m high cliff with an initial speed of $5 \mathrm{~ms}^{-1}$ at an angle of 45° above the horizontal. Its position after t
seconds can be described using the parametric equations

$$
x=\frac{5 \sqrt{2}}{2} t m, \quad y=\left(-4.9 t^{2}+\frac{5 \sqrt{2}}{2} t+25\right) m, \quad 0 \leq t \leq k
$$

where x is the horizontal distance, y is the vertical distance from the ground and k is a constant.
Given that the model is valid from the time the stone is thrown to the time it hits the ground,
a) find the value of k
b) find the horizontal distance travelled by the stone once it hits the ground
a) $k=2.65(2 \mathrm{dp})$
b) $9.36 \mathrm{~m}(2 \mathrm{dp})$

