8) Parametric equations

8.1) Parametric equations
8.2) Using trigonometric identities
8.3) Curve sketching
8.4) Points of intersection
8.5) Modelling with parametric equations

8.1) Parametric equations

Chapter CONTENTS

Worked example	Your turn
A curve has parametric equations $x = 3t$, $y = t^2$, $-4 < t < 4$ Find: a) A Cartesian equation of the curve in the form $y = f(x)$ b) The domain and range of $f(x)$ c) Sketch the curve	A curve has parametric equations $x = 2t$, $y = t^2$, $-3 < t < 3$ Find: a) A Cartesian equation of the curve in the form $y = f(x)$ b) The domain and range of $f(x)$ c) Sketch the curve a) $y = \frac{x^2}{4}$ b) Domain: $-6 < x < 6$ Range: $0 \le f(x) < 9$ c) c) c) c) c) c) c) c) c) c)

A curve has parametric equations

$$x = \ln(t+5)$$
, $y = \frac{1}{t+7}$, $t > -4$

Find:

- a) A Cartesian equation of the curve in the form y = f(x)
- b) The domain and range of f(x)

Your turn

A curve has parametric equations

$$x = \ln(t+3)$$
, $y = \frac{1}{t+5}$, $t > -2$

Find:

- a) A Cartesian equation of the curve in the form y = f(x)
- b) The domain and range of f(x)

a)
$$y = \frac{1}{e^{x}+2}$$

b) Domain: $x > 0$
Range: $0 < f(x) < \frac{1}{3}$

Worked example	Your turn	
A curve has parametric equations $x = \ln t$, $y = t^3 - 4$, $t > 0$ Find: a) A Cartesian equation of the curve in the form $y = f(x)$ b) The domain and range of $f(x)$	A curve has parametric equations $x = \ln t$, $y = t^2 - 1$, $t > 0$ Find: a) A Cartesian equation of the curve in the form $y = f(x)$ b) The domain and range of $f(x)$ a) $y = e^{2x} - 1$ b) Domain: $x \in \mathbb{R}$ Range: $f(x) > -1$	

A curve has parametric equations

$$x = \frac{3t}{1-t}, \qquad y = 5t + \frac{2}{t},$$

Show that the Cartesian equation of the curve is

$$y = \frac{ax^2 + bx + c}{x(x+3)}$$

where *a*, *b* and *c* are constants to be found.

Your turn

A curve has parametric equations $x = \frac{5t}{1-t}, \quad y = 2t + \frac{3}{t},$ Show that the Cartesian equation of the curve is $y = \frac{ax^2 + bx + c}{x(x+5)}$ where *a*, *b* and *c* are constants to be found.

> Shown a = 5, b = 30, c = 75

8.2) Using trigonometric identities Chapter CONTENTS

Worked example	Your turn
A curve has parametric equations $x = \sin t - 2, y = \cos t + 3, t \in \mathbb{R}$ Find: a) A Cartesian equation of the curve in the form $y = f(x)$ b) Sketch the curve	A curve has parametric equations $x = \sin t + 2, y = \cos t - 3, t \in \mathbb{R}$ Find: a) A Cartesian equation of the curve in the form $y = f(x)$ b) Sketch the curve a) $(x - 2)^2 + (y + 3)^2 = 1$ b) Circle, radius 1, centre $(2, -3)$
Graphs used with permission from [DESMOS: https://www.desmos.com/

Worked example Your turn A curve has parametric equations A curve has parametric equations $x = \sin t$, $y = \sin 2t$, $-\frac{\pi}{2} \le t \le \frac{\pi}{2}$ $x = \cos t$, $y = \sin 2t$, $-\frac{\pi}{2} \le t \le \frac{\pi}{2}$ Find: Find: A Cartesian equation of the curve in the form y =A Cartesian equation of the curve in the form y =a) a) f(x)f(x)b) The valid domain and range of f(x)The valid domain and range of f(x)b) a) $y = 2x\sqrt{1-x^2}$

b) Domain: $-1 \le x \le 1$ Range: $-1 \le f(x) \le 1$

Worked example	Your turn
A curve has parametric equations	A curve has parametric equations
$x = 4 \cos t$, $y = \cos 2t - 1$, $0 \le t \le \pi$	$x = 2 \sin t$, $y = 1 - \cos 2t$, $-\frac{\pi}{2} \le t \le \frac{\pi}{2}$
Find a Cartesian equation of the curve in the form	Find a Cartesian equation of the curve in the form
$y = f(x), -k \le x \le k$, stating the value of the constant k	$y = f(x), -k \le x \le k$, stating the value of the constant k

 $y = \frac{x^2}{2}, -2 \le x \le 2 \ (k = 2)$

Worked example	Your turn
A curve has parametric equations $x = \cot t + 1$, $y = \csc^2 t - 3$, $0 < t < \pi$ Find a Cartesian equation of the curve in the form $y = f(x)$ and state the domain of x for which the curve is defined	A curve has parametric equations $x = \cot t + 2$, $y = \csc^2 t - 2$, $0 < t < \pi$ Find a Cartesian equation of the curve in the form $y = f(x)$ and state the domain of x for which the curve is defined $y = x^2 - 4x + 3, x \in \mathbb{R}$

Worked example	Your turn
A curve has parametric equations $x = \sqrt{5} \sin 2t$, $y = 10 \sin^2 t$, $0 \le t < \pi$ Find a Cartesian equation of the curve	A curve has parametric equations $x = \sqrt{3} \sin 2t$, $y = 4 \cos^2 t$, $0 \le t < \pi$ Find a Cartesian equation of the curve
	$x^2 = 3y\left(1 - \frac{y}{4}\right)$

A curve has parametric equations

$$x = 2 \sin t$$
, $y = \sin \left(t + \frac{\pi}{6} \right)$, $-\frac{\pi}{2} < t < \frac{\pi}{2}$

Find a Cartesian equation of the curve in the form y = f(x) and state the domain of x for which the curve is defined

Your turn

A curve has parametric equations

$$x = 2\cos t$$
, $y = \sin\left(t - \frac{\pi}{6}\right)$, $0 < t < \pi$

Find a Cartesian equation of the curve in the form y = f(x) and state the domain of x for which the curve is defined $y = \frac{1}{4} \left(\sqrt{12 - 3x^2} - x \right), -2 < x < 2$

Worked example	Your turn
A curve has parametric equations $x = \tan t$, $y = 5\sin(t - \pi)$, $0 < t < \frac{\pi}{2}$ Find a Cartesian equation of the curve	A curve has parametric equations $x = \tan t$, $y = 4\sin(t + \pi)$, $0 < t < \frac{\pi}{2}$ Find a Cartesian equation of the curve
	$x = -\frac{y}{\sqrt{16 - y^2}}$

8.3) Curve sketching

Chapter CONTENTS

Worked example	Your turn
Draw the curve given by the parametric equations $x = 3t$, $y = t^2$, $-5 \le t \le 1$	Draw the curve given by the parametric equations $x = 2t$, $y = t^2$, $-1 \le t \le 5$ $y = \frac{x^2}{4}, -2 \le x \le 10$

Worked example	Your turn
Draw the curve given by the parametric equations $x = 2 - t$, $y = t^2 - 3$, $-3 \le t \le 2$	Draw the curve given by the parametric equations $x = 3 - t$, $y = t^2 + 2$, $-2 \le t \le 3$
	$y = x^2 - 6x + 11, 0 \le x \le 5$

Wor	Worked example		Your turn
Draw the curve give $x = 2 \cos t - 3$,			Draw the curve given by the parametric equations $x = 3\cos t + 4$, $y = 2\sin t$, $0 \le t \le 2\pi$
			$\left(\frac{x-4}{3}\right)^2 + \left(\frac{y}{2}\right)^2 = 1, \qquad 1 \le x \le 7$
			-5
			(1,0) 0 5 (7,0) 10
			(4, -2)
			-5

8.4) Points of intersection

Chapter CONTENTS

Worked example	Your turn
Worked example A curve <i>C</i> is given by the parametric equations $x = at^2 + t$, $y = a(t^3 + 27)$, $t \in \mathbb{R}$, where <i>a</i> is a non-zero constant. Given that <i>C</i> passes through the point (-6,0), a) find the value of <i>a</i> . b) find the coordinates of the points <i>A</i> and <i>B</i> where the curve crosses the <i>y</i> -axis.	Your turn A curve <i>C</i> is given by the parametric equations $x = at^2 + t$, $y = a(t^3 + 8)$, $t \in \mathbb{R}$, where <i>a</i> is a non-zero constant. Given that <i>C</i> passes through the point (-4,0), a) find the value of <i>a</i> . b) find the coordinates of the points <i>A</i> and <i>B</i> where the curve crosses the <i>y</i> -axis. a) $a = -\frac{1}{2}$ b) (0, -4) and (0, -8)
Graphs used with permission from [DESMOS: <u>https://www.desmos.com/</u>

Worked example	Your turn
A curve <i>C</i> is given by the parametric equations $x = t^2$, $y = 2t$, $t \in \mathbb{R}$ Find the coordinates of the point(s) of intersection between the curve <i>C</i> and the line $x + y - 8 = 0$	A curve <i>C</i> is given by the parametric equations $x = t^2$, $y = 4t$, $t \in \mathbb{R}$ Find the coordinates of the point(s) of intersection between the curve <i>C</i> and the line $x + y + 4 = 0$
	(4, -8)
	-10

Worked example	Your turn
A curve <i>C</i> is given by the parametric equations $x = \cos t - \sin t$, $y = \left(t + \frac{\pi}{6}\right)^2$, $-\frac{\pi}{3} < t < \frac{3\pi}{2}$ a) Find the point where the curve intersects the line $y = \pi^2$. b) Find the coordinates of the points where the curve cuts the <i>y</i> -axis.	A curve <i>C</i> is given by the parametric equations $x = \cos t + \sin t$, $y = \left(t - \frac{\pi}{6}\right)^2$, $-\frac{\pi}{2} < t < \frac{4\pi}{3}$ a) Find the point where the curve intersects the line $y = \pi^2$. b) Find the coordinates of the points where the curve cuts the <i>y</i> -axis. a) $\left(-\frac{1+\sqrt{3}}{2}, \pi^2\right)$ b) $\left(0, \frac{25\pi^2}{144}\right)$ and $\left(0, \frac{49\pi^2}{144}\right)$

Worked example	Your turn
A curve <i>C</i> is given by the parametric equations $x = 1 - \frac{1}{3}t$, $y = 3^t - 1$, $t \in \mathbb{R}$ Find the coordinates of the <i>x</i> and <i>y</i> intercepts	A curve <i>C</i> is given by the parametric equations $x = 1 - \frac{1}{2}t$, $y = 2^t - 1$, $t \in \mathbb{R}$ Find the coordinates of the <i>x</i> and <i>y</i> intercepts (0, 3) and (1, 0)

Worked example	Your turn
A curve <i>C</i> is given by the parametric equations $x = e^{3t}$, $y = e^t + 1$, $t \in \mathbb{R}$ A straight line <i>l</i> passes through the points <i>A</i> and <i>B</i> where $t = \ln 3$ and $t = \ln 4$ respectively. Find an equation for <i>l</i> in the form $ax + by + c = 0$	A curve <i>C</i> is given by the parametric equations $x = e^{2t}$, $y = e^t - 1$, $t \in \mathbb{R}$ A straight line <i>l</i> passes through the points <i>A</i> and <i>B</i> where $t = \ln 2$ and $t = \ln 3$ respectively. Find an equation for <i>l</i> in the form $ax + by + c = 0$ x - 5y + 1 = 0

8.5) Modelling with parametric equations Chapter CONTENTS

Worked example	Your turn
A plane's position at time <i>t</i> seconds after take-off can be modelled with the following parametric equations: $x = (v \cos \theta)t \text{ m}, y = (v \sin \theta)t \text{ m}, t > 0$ where <i>v</i> is the speed of the plane, θ is the angle of elevation of its path, <i>x</i> is the horizontal distance travelled and <i>y</i> is the vertical distance travelled, relative to a fixed origin. When the plane has travelled 500m horizontally, it has climbed 125m. Given that the plane's speed is 40 m s ⁻¹ a) find the parametric equations for the plane's motion. b) find the vertical height of the plane after 20 seconds. c) show that the plane's motion is a straight line. d) explain why the domain of <i>t</i> , <i>t</i> > 0, is not realistic.	A plane's position at time <i>t</i> seconds after take-off can be modelled with the following parametric equations: $x = (v \cos \theta)t m$, $y = (v \sin \theta)t m$, $t > 0$ where <i>v</i> is the speed of the plane, θ is the angle of elevation of its path, <i>x</i> is the horizontal distance travelled and <i>y</i> is the vertical distance travelled, relative to a fixed origin. When the plane has travelled 600m horizontally, it has climbed 120m. Given that the plane's speed is 50 m s ⁻¹ , a) find the parametric equations for the plane's motion. b) find the vertical height of the plane after 10 seconds. c) show that the plane's motion is a straight line. a) $x = 49.0t$, $y = 9.80t$ (3 sf) b) 98 <i>m</i> c) $y = \frac{1}{5}x$ which is linear

The motion of a figure skater relative to a fixed origin, O, at time t minutes is modelled using the parametric equations

$$x = 4\cos 10t$$
, $y = 6\sin \left(5t - \frac{\pi}{3}\right)$, $t \ge 0$

where *x* and *y* are measured in metres.

- a) Find the coordinates of the figure skater at the beginning of his motion.
- b) Find the coordinates of the point where the figure skater intersects his own path.
- c) Find the coordinates of the points where the path of the figure skater crosses the *y*-axis.
- d) Determine how long it takes the figure skater to complete one complete figure-of-eight motion.

Your turn

The motion of a figure skater relative to a fixed origin, *O*, at time *t* minutes is modelled using the parametric equations

$$x = 8\cos 20t$$
, $y = 12\sin\left(10t - \frac{\pi}{3}\right)$, $t \ge 0$

where x and y are measured in metres.

- a) Find the coordinates of the figure skater at the beginning of his motion.
- b) Find the coordinates of the point where the figure skater intersects his own path.
- c) Find the coordinates of the points where the path of the figure skater crosses the *y*-axis.

d) Determine how long it takes the figure skater to complete one complete figure-of-eight motion.

a)
$$t = 0, x = 8, y = -6\sqrt{3}$$

b) $(-4, 0)$
c) $(0, -3.11), (0, 11.59), (0, 3.11), (0, -11.59)$ (2
dp)
d) $\frac{\pi}{5}$ minutes = 37.7 seconds (1 dp)

Worked exampleA stone is thrown from the top of a 50 m high cliff with an initial speed of
 $5 ms^{-1}$ at an angle of 30° above the horizontal. Its position after tA stone is the
 $5 ms^{-1}$ at an angle of 30° above the horizontal. Its position after t

seconds can be described using the parametric equations

$$x = \frac{5\sqrt{3}}{2}t m, \qquad y = \left(-4.9t^2 + \frac{5\sqrt{3}}{2}t + 50\right)m, \qquad 0 \le t \le k$$

where x is the horizontal distance, y is the vertical distance from the ground and k is a constant.

Given that the model is valid from the time the stone is thrown to the time it hits the ground,

- a) find the value of k
- b) find the horizontal distance travelled by the stone once it hits the ground

Your turn

A stone is thrown from the top of a 25 m high cliff with an initial speed of 5 ms^{-1} at an angle of 45° above the horizontal. Its position after t seconds can be described using the parametric equations

$$x = \frac{5\sqrt{2}}{2}t m, \qquad y = \left(-4.9t^2 + \frac{5\sqrt{2}}{2}t + 25\right)m, \qquad 0 \le t \le k$$

where x is the horizontal distance, y is the vertical distance from the ground and k is a constant.

Given that the model is valid from the time the stone is thrown to the time it hits the ground,

- a) find the value of k
- b) find the horizontal distance travelled by the stone once it hits the ground

a)
$$k = 2.65 (2 \text{ dp})$$

b) 9.36 m (2 dp)