8) Modelling in Mechanics

8.1) Constructing a model
8.2) Modelling assumptions
8.3) Quantities and units
8.4) Working with vectors

8.1) Constructing a model

Worked example

Your turn

A stone is thrown from the top of a cliff into the sea. The height of the stone above sea level, $h \mathrm{~m}$, at time t seconds after it is thrown can be modelled using the equation $h=-5 t^{2}+15 t+90$
a) Find the height of the stone above sea level:
i) When it is released
ii) 8 seconds after it is thrown
b) Use the model to predict the height of the stone above sea level after 20 seconds.
c) Comment on the validity of this prediction.
d) The model is only valid from the time the stone is thrown until the time it enters the sea. Find the range of values of t for which the model is valid.

A basketball is thrown into a net. The height of the basketball above the ground can be modelled using the equation $h=2+1.1 x-0.1 x^{2}$, where x m is the horizontal distance travelled.
a) Find the height of the basketball:
i) When it is released
ii) At a horizontal distance of 0.5 m
b) Use the model to predict the height of the basketball when it is at a horizontal distance of 15 m from the player.
c) Comment on the validity of this prediction.
d) The model is only valid when the balls is above the ground. Find the range of values of x for which the model is valid.
a)
i) 2 m
ii) 2.525 m
b) -4 m
c) Height cannot be negative, so the model is not valid when $x=15 \mathrm{~m}$
d) $0.00 \leq x<12.59$ (2 dp)

8.2) Modelling assumptions

Your turn

List assumptions you would make to create a simple model of:

- The motion of two objects of different masses connected by a string that passes over a pulley
- The motion of a child on a sledge going down a snow-covered hill

List assumptions you would make to create a simple model of:

- The motion of a golf ball after it is hit

Model the golf ball as a particle. Ignore the effects of air resistance. Ignore the rotational effect of any external forces acting on it.

- The motion of a suitcase on wheels being pulled along a path by its handle

Model the suitcase and handle as a single particle, consider the path to be smooth, and ignore friction between the wheels and their holdings.

Your turn

Convert to SI units:

- $56 \mathrm{~km} \mathrm{~h}^{-1}$
- $51 \mathrm{~g} \mathrm{~cm}^{-2}$
- 40 cm per minute
- $42 \mathrm{~g} \mathrm{~m}^{-3}$
- $5.4 \times 10^{-3} \mathrm{~g} \mathrm{~cm}^{-3}$
- $3.6 \times 10^{-2} \mathrm{~kg} \mathrm{~cm}^{-2}$

Convert to SI units:

- $65 \mathrm{~km} \mathrm{~h}^{-1}$

$$
18.1 \mathrm{~ms}^{-1} \text { (3 sf) }
$$

- $15 \mathrm{~g} \mathrm{~cm}^{-2}$

$$
150 \mathrm{~kg} \mathrm{~m}^{-2}
$$

- 30 cm per minute

$$
5 \times 10^{-3} \mathrm{~ms}^{-1}
$$

- $24 \mathrm{~g} \mathrm{~m}^{-3}$

$$
2.4 \times 10^{-2} \mathrm{~kg} \mathrm{~m}^{-3}
$$

- $4.5 \times 10^{-2} \mathrm{~g} \mathrm{~cm}^{-3}$

$$
45 \mathrm{~kg} \mathrm{~m}^{-3}
$$

- $6.3 \times 10^{-3} \mathrm{~kg} \mathrm{~cm}^{-2}$
$63 \mathrm{~kg} \mathrm{~m}^{-2}$

Convert from scalar to vector form:

Displacement $($ from $A)=\binom{5 \cos 60^{\circ}}{5 \sin 60^{\circ}}=\binom{2.5}{4.33} m$

Convert from scalar to vector form:

Force vector $=\binom{8 \cos 45^{\circ}}{-8 \sin 45^{\circ}}=\binom{4 \sqrt{2}}{-4 \sqrt{2}} N$

Your turn

Convert from vector to scalar form:
Velocity $=\binom{-3}{4} \mathrm{~ms}^{-1}$
Convert from vector to scalar form:
Velocity $=\binom{5}{-12} \mathrm{~ms}^{-1}$

$$
\text { Speed }=13 \mathrm{~ms}^{-1}
$$

Your turn

Convert from vector to scalar form:
Acceleration $=(3 \boldsymbol{i}-4 \boldsymbol{j}) \mathrm{ms}^{-2}$
Convert from vector to scalar form:
Acceleration $=(-6 \boldsymbol{i}+8 \boldsymbol{j}) m s^{-2}$
Magnitude of the acceleration $=10 \mathrm{~ms}^{-1}$

Your turn

The velocity of a particle is given by

$$
v=2 \boldsymbol{i}+7 \boldsymbol{j} \mathrm{~ms}^{-1} .
$$

Find:
a) The speed of the particle
b) The angle the direction of motion of the particle makes with the unit vector \boldsymbol{i}
c) The angle the direction of motion of the particle makes with the unit vector \boldsymbol{j}

The velocity of a particle is given by

$$
v=3 \boldsymbol{i}+5 \boldsymbol{j} \mathrm{~ms}^{-1} .
$$

Find:
a) The speed of the particle
b) The angle the direction of motion of the particle makes with the unit vector \boldsymbol{i}
c) The angle the direction of motion of the particle makes with the unit vector \boldsymbol{j}
a) $5.83 \mathrm{~ms}^{-1}(2 \mathrm{dp})$
b) $59.04^{\circ}(2 \mathrm{dp})$
c) $30.96^{\circ}(2 \mathrm{dp})$

Your turn

The velocity of a particle is given by

$$
v=3 \boldsymbol{i}-5 \boldsymbol{j} \mathrm{~ms}^{-1} .
$$

Find:
a) The speed of the particle
b) The angle the direction of motion of the particle makes with the unit vector \boldsymbol{i}
c) The angle the direction of motion of the particle makes with the unit vector \boldsymbol{j}

The velocity of a particle is given by

$$
v=2 \boldsymbol{i}-7 \boldsymbol{j} \mathrm{~ms}^{-1} .
$$

Find:
a) The speed of the particle
b) The angle the direction of motion of the particle makes with the unit vector \boldsymbol{i}
c) The angle the direction of motion of the particle makes with the unit vector \boldsymbol{j}
a) $7.28 \mathrm{~ms}^{-1}(2 \mathrm{dp})$
b) 74.05° (2 dp)
c) $164.05^{\circ}(2 \mathrm{dp})$

Worked example

Your turn

A man walks from A to B and then from B to C. His displacement from A to B is $5 \boldsymbol{i}-6 \boldsymbol{j} \mathrm{~m}$. His displacement from B to C is $4 \boldsymbol{i}+12 \boldsymbol{j} \mathrm{~m}$.
a) What is the magnitude of the displacement from A to C ?
b) What is the total distance the man has walked in getting from A to C.

A man walks from A to B and then from B to C. His displacement from A to B is $6 \boldsymbol{i}+4 \boldsymbol{j} \mathrm{~m}$.
His displacement from B to C is $5 \boldsymbol{i}-12 \boldsymbol{j} \mathrm{~m}$.
a) What is the magnitude of the displacement from A to C ?
b) What is the total distance the man has walked in getting from A to C.
a) 13.60 km (2 dp)
b) 20.21 km (2 dp)

