7.7) Modelling with trigonometric functions

Worked example

Your turn

The cabin pressure, P (psi) on an aeroplane at cruising altitude can be modelled by the equation

$$
P=14.5-0.2 \sin (t-3)
$$

where t is the time in hours since cruising altitude was first reached, and angles are in radians. Find:
a) The maximum and minimum cabin pressure
b) The time after reaching cruising altitude that the cabin first reaches a maximum pressure
c) The cabin pressure after 3 hours at cruising altitude
d) All the times within the first 10 hours of cruising that the cabin pressure would be exactly 14.42 psi

The cabin pressure, P (psi) on an aeroplane at cruising altitude can be modelled by the equation

$$
P=11.5-0.5 \sin (t-2)
$$

where t is the time in hours since cruising altitude was first reached, and angles are in radians. Find:
a) The maximum and minimum cabin pressure
b) The time after reaching cruising altitude that the cabin first reaches a maximum pressure
c) The cabin pressure after 5 hours at cruising altitude
d) All the times within the first 8 hours of cruising that the cabin pressure would be exactly 11.3 psi
a) Maximum $=12 \mathrm{psi}$; Minimum $=11 \mathrm{psi}$
b) 0.43 hours $=26$ minutes
c) 11.43 psi
d) 2 hours 25 minutes, and 4 hours 44 minutes

Your turn

a) Express $7 \cos \theta-5 \sin \theta$ in the form $R \cos (\theta+\alpha)$, where $R>0$ and $0<\alpha<\frac{\pi}{2}$. State the exact value of R and give α to four decimal places.
b) State the maximum value of $7 \cos \theta-5 \sin \theta$ and the value of θ, for $0<\theta<2 \pi$ at which this maximum occurs.

The height H above ground of a passenger on a Ferris wheel is modelled by the equation

$$
H=12-7 \cos \left(\frac{\pi t}{4}\right)+5 \sin \left(\frac{\pi t}{4}\right)
$$

where H is measured in metres, and t is the time in minutes after the wheel starts turning.
c) Calculate the maximum value of H predicted by this model, and the value of t when this maximum first occurs
d) Determine the time for the Ferris wheel to complete five revolutions
a) Express $9 \cos \theta-2 \sin \theta$ in the form $R \cos (\theta+\alpha)$, where $R>0$ and $0<\alpha<\frac{\pi}{2}$. State the exact value of R and give α to four decimal places.
b) State the maximum value of $9 \cos \theta-2 \sin \theta$ and the value of θ, for $0<\theta<2 \pi$ at which this maximum occurs.

The height H above ground of a passenger on a Ferris wheel is modelled by the equation

$$
H=10-9 \cos \left(\frac{\pi t}{5}\right)+2 \sin \left(\frac{\pi t}{5}\right)
$$

where H is measured in metres, and t is the time in minutes after the wheel starts turning.
c) Calculate the maximum value of H predicted by this model, and the value of t when this maximum first occurs
d) Determine the time for the Ferris wheel to complete two revolutions
a) $R=\sqrt{85}, \alpha=0.2187$
b) Maximum $=\sqrt{85}$ when $\theta=6.06$
c) Maximum $H=19.22 m$ at $t=4.65$
d) 20 minutes

Your turn

a) Express $1.5 \sin \theta-2 \cos \theta$ in the form $R \sin (\theta-\alpha)$, where $R>0$ and $0<\alpha<\frac{\pi}{2}$. State the exact value of R and give α to four decimal places.
b) State the maximum value of $1.5 \sin \theta-2 \cos \theta$ and the value of θ, for $0<\theta<\pi$ at which this maximum occurs.

The height H of sea water on a particular day can be modelled by the equation

$$
H=8+1.5 \sin \left(\frac{2 \pi t}{25}\right)-2 \cos \left(\frac{2 \pi t}{25}\right), 0 \leq t<12
$$

where H is measured in metres, and t is the number of hours after midnight.
c) Calculate the maximum value of H predicted by this model, and the value of t when this maximum occurs
d) Calculate, to the nearest minute, the times when the height of sea water is predicted, by this model, to be 7 metres.
a) Express $2 \sin \theta-1.5 \cos \theta$ in the form $R \sin (\theta-\alpha)$, where $R>0$ and $0<\alpha<\frac{\pi}{2}$. State the exact value of R and give α to four decimal places.
b) State the maximum value of $2 \sin \theta-1.5 \cos \theta$ and the value of θ, for $0<\theta<\pi$ at which this maximum occurs.

The height H of sea water on a particular day can be modelled by the equation

$$
H=6+2 \sin \left(\frac{4 \pi t}{25}\right)-1.5 \cos \left(\frac{4 \pi t}{25}\right), 0 \leq t<12
$$

where H is measured in metres, and t is the number of hours after midday.
c) Calculate the maximum value of H predicted by this model, and the value of t when this maximum occurs
d) Calculate, to the nearest minute, the times when the height of sea water is predicted, by this model, to be 7 metres.
a) $R=2.5, \alpha=0.6435$
b) Maximum $=2.5$ when $\theta=2.21$
c) Maximum $H=8.5 \mathrm{~m}$ at $t=4.41$
d) $14: 06$ and 18:43

