7.5) Methods of proof

Worked example	Your turn
Prove by exhaustion that the sum of an integer and the square of the integer is even for all integers <i>n</i>	Prove by exhaustion that all square numbers are either a multiple of 4 or 1 more than a multiple of 4
	Proof

Worked example	Your turn
Disprove the statement: " $n^2 - n + 3$ is prime for all integers <i>n</i> ."	Disprove the statement: " $n^2 - n + 41$ is prime for all integers n ." $n = 41, n^2 - n + 41 = 41^2 = 1681$ 1681 has 3 factors: 1, 41 and 1681

Worked example	Your turn
 a) Prove that for all positive values of <i>p</i> and <i>q p</i> + <i>q</i> > √4<i>pq</i> b) Use a counter-example to show that this is not true when <i>p</i> and <i>q</i> are not both positive. 	a) Prove that for all positive values of x and y $\frac{x}{y} + \frac{y}{x} \ge 2$ b) Use a counter-example to show that this is not true when x and y are not both positive. a) $(x - y)^2 \ge 0$ $x^2 + y^2 - 2xy \ge 0$ $\frac{x^2 + y^2 - 2xy}{xy} \ge 0$ [valid as $x, y > 0 \therefore xy > 0$] $\frac{x^2}{xy} + \frac{y^2}{xy} - \frac{2xy}{xy} \ge 0$ $\frac{x}{y} + \frac{y}{x} - 2 \ge 0$ $\frac{x}{y} + \frac{y}{x} \ge 2$ b) e.g. $x = -3, y = 6$ $-\frac{3}{6} + \frac{6}{-3} = -\frac{1}{2} - 2 = -\frac{5}{2} < -2$