7.5) Dynamics and inclined planes

Worked example

Your turn

A particle is held at rest on a rough plane which is inclined to the horizontal at an angle α, where $\tan \alpha=\frac{5}{12}$. The coefficient of friction between the particle and the plane is 0.25 .
The particle is released and slides down the plane. Find:
(a) the acceleration of the particle.
(b) the distance it slides in the first 4 seconds.

A particle is held at rest on a rough plane which is inclined to the horizontal at an angle α, where $\tan \alpha=\frac{3}{4}$.
The coefficient of friction between the particle and the plane is 0.5 .
The particle is released and slides down the plane. Find:
(a) the acceleration of the particle.
(b) the distance it slides in the first 2 seconds.
a) $2.0 \mathrm{~ms}^{-2}(2 \mathrm{sf})$
b) $3.9 \mathrm{~m}(2 \mathrm{sf})$

Your turn

A box of mass 4 kg is pushed up a rough plane by a horizontal force of magnitude 50 N . The plane is inclined to the horizontal at an angle of 20°. Given that the coefficient of friction between the box and the plane is 0.1 , find the acceleration of the box.

A box of mass 2 kg is pushed up a rough plane by a horizontal force of magnitude 25 N .
The plane is inclined to the horizontal at an angle of 10°. Given that the coefficient of friction between the box and the plane is 0.3 , find the acceleration of the box.
$7.1 \mathrm{~ms}^{-2}$ (2 sf) up the plane

Your turn

A particle of mass 0.3 kg slides with constant acceleration down a line of greatest slope of a rough plane, which is inclined at 15° to the horizontal.
The particle passes through two points A and B, where $A B=5 \mathrm{~m}$.
The speed of P at A is $4 \mathrm{~ms}^{-1}$.
It takes $7 s$ to move from A to B. Find:
a) The speed of P at B
b) The acceleration of P
c) The coefficient of friction between P and the plane

A particle of mass 0.6 kg slides with constant acceleration down a line of greatest slope of a rough plane, which is inclined at 25° to the horizontal.
The particle passes through two points A and B, where $A B=10 \mathrm{~m}$.
The speed of P at A is $2 \mathrm{~ms}^{-1}$.
It takes $3.5 s$ to move from A to B. Find:
a) The speed of P at B
b) The acceleration of P
c) The coefficient of friction between P and the plane
a) $3.7 \mathrm{~ms}^{-1}(2 \mathrm{sf})$
b) $0.49 \mathrm{~ms}^{-2}(2 \mathrm{sf})$
c) $0.41(2 \mathrm{sf})$

