7.4) Two-tailed tests

Your turn

Joan believes the probability of rolling a 4 on a sixsided dice is $\frac{1}{6}$.
She rolls the dice 10 times and rolls a 4 five times. Using a 5% significance level, test her belief.

John believes a coin is lands on tails with probability $\frac{1}{2}$.
He tosses the coin 8 times and it lands on tails 8 times.
Using a 5% significance level, test his belief.
$X=$ number of times coin lands on tails.
$p=$ probability/proportion of times coin
lands on tails.
$H_{0}: p=0.5$
$H_{1}: p \neq 0.5$
Assume H_{0} true. $X \sim B(8,0.5)$
5\% significance level
Reject H_{0} if $P(X \geq 8)<0.05$
Test $P(X \geq 8)=0.0039 \ldots<0.05$
The result is significant.
Sufficient evidence to reject H_{0}
Sufficient evidence to reject John's belief

Your turn

Joan believes the probability of rolling a 4 on a sixsided dice is $\frac{1}{6}$.
She rolls the dice 10 times.
a) Find the critical region(s) for this test at the 5% significance level.
b) A 4 is rolled five times. Comment on this observation in light of the critical region.

John believes a coin is lands on tails with probability $\frac{1}{2}$.
He tosses the coin 8 times.
a) Find the critical region(s) for this test at the 5% significance level.
b) The coin lands on tails 8 times. Comment on this observation in light of the critical region.
a) $X=$ number of times coin lands on tails.
$p=$ probability/proportion of times coin lands on tails.
$H_{0}: p=0.5$
$H_{1}: p \neq 0.5$
Assume H_{0} true. $X \sim B(8,0.5)$
5\% significance level
Reject H_{0} if $P\left(X \leq x_{1}\right)<0.025$

$$
P(X \leq 1)=0.0351 \ldots>0.025
$$

$$
P(X \leq 0)=0.0039 \ldots<0.025
$$

$$
\therefore x_{1}=0
$$

$$
\begin{gathered}
\text { or } \quad P\left(X \geq x_{2}\right)<0.025 \\
1-P\left(X \leq x_{2}-1\right)<0.025 \\
-P\left(X \leq x_{2}-1\right)<-0.975 \\
P\left(X \leq x_{2}-1\right)>0.975 \\
P(X \leq 6)=0.9648 \ldots<0.975 \\
P(X \leq 7)=0.9960 \ldots>0.975 \\
x_{2}-1=7 \\
\therefore x_{2}=8
\end{gathered}
$$

Lower tail: $X=0$

Critical regions: Reject H_{0} if $X=0 \cup X=8$
b) 8 is in the critical region.

The result is significant.
Sufficient evidence to reject H_{0}
Sufficient evidence to reject John's belief

Worked example

Your turn

An election candidate believes he has the support of 30% of the residents in a particular town. The researcher asks 30 people whether they support the candidate or not. 1 person says they support the candidate.
Test, at the 1% significance level, whether the candidate's claim is true.

An election candidate believes she has the support of 40% of the residents in a particular town. The researcher asks 20 people whether they support the candidate or not. 3 people say they support the candidate.
Test, at the 2% significance level, whether the candidate's claim is true.
$X=$ number of people who say they support the
candidate
$p=$ probability/proportion of people who say they
support the candidate
$H_{0}: p=0.4$
$H_{1}: p \neq 0.4$
Assume H_{0} true. $X \sim B(20,0.4)$
5% significance level
Reject H_{0} if $P(X \leq 3)<0.01$
Test $P(X \leq 3)=0.0159 \ldots>0.01$
The result is not significant.
Insufficient evidence to reject H_{0}
Insufficient evidence to reject the candidate's
belief.

Worked example

Your turn

An election candidate believes he has the support of 30% of the residents in a particular town.
The researcher asks 30 people whether they support the candidate or not.
a) Find the critical region(s) for a test of the candidate's claim at the 1% significance level.
b) 1 person says they support the candidate. Comment on this observation in light of the critical region.

An election candidate believes she has the support of 40% of the residents in a particular town.
The researcher asks 20 people whether they support the candidate or not.
a) Find the critical region(s) for a test of the candidate's claim at the 2% significance level.
b) 3 people say they support the candidate. Comment on this observation in light of the critical region.
$X=$ number of people who say they support the candidate
$p=$ probability/proportion of people who say they support the
candidate
$H_{0}: p=0.4$
$H_{1}: p \neq 0.4$
Assume H_{0} true. $X \sim B(20,0.4)$
5\% significance level
Reject H_{0} if $P\left(X \leq x_{1}\right)<0.01$
$P(X \leq 3)=0.0159 \ldots>0.01$

$$
\text { or } \quad P\left(X \geq x_{2}\right)<0.01
$$

$$
P(X \leq 2)=0.0036 \ldots<0.01
$$

$$
\therefore x_{1}=2 \quad P\left(X \leq x_{2}-1\right)>0.99
$$

$$
P(X \leq 12)=0.9789 \ldots<0.99
$$

$$
P(X \leq 13)=0.9935 \ldots>0.99
$$

$$
x_{2}-1=13
$$

$$
\therefore x_{2}=14
$$

Lower tail: $0 \leq X \leq 2$
Upper tail $14 \leq X \leq 20$

Critical regions: Reject H_{0} if $0 \leq X \leq 2 \cup 14 \leq X \leq 20$
b) 3 is not in the critical region.

The result is not significant.
Insufficient evidence to reject H_{0}
Insufficient evidence to reject the candidate's belief.

Worked example

Your turn

An election candidate believes he has the support of 30% of the residents in a particular town. The researcher asks 30 people whether they support the candidate or not. 16 people say they support the candidate.
Test, at the 1% significance level, whether the candidate's claim is true.

An election candidate believes she has the support of 40% of the residents in a particular town. The researcher asks 20 people whether they support the candidate or not. 14 people say they support the candidate.
Test, at the 2% significance level, whether the candidate's claim is true.
$X=$ number of people who say they support the
candidate
$p=$ probability/proportion of people who say they
support the candidate
$H_{0}: p=0.4$
$H_{1}: p \neq 0.4$
Assume H_{0} true. $X \sim B(20,0.4)$
5\% significance level
Reject H_{0} if $P(X \geq 14)<0.01$
Test $P(X \geq 14)=0.0064 \ldots<0.01$
The result is significant.
Sufficient evidence to reject H_{0}
Sufficient evidence to reject the candidate's belief.

Worked example

Your turn

An election candidate believes he has the support of 30% of the residents in a particular town.
The researcher asks 30 people whether they support the candidate or not.
a) Find the critical region(s) for a test of the candidate's claim at the 1% significance level.
b) 16 people say they support the candidate. Comment on this observation in light of the critical region.

An election candidate believes she has the support of 40% of the residents in a particular town.
The researcher asks 20 people whether they support the candidate or not.
a) Find the critical region(s) for a test of the candidate's claim at the 2% significance level.
b) 14 people say they support the candidate. Comment on this observation in light of the critical region.
$X=$ number of people who say they support the candidate
$p=$ probability/proportion of people who say they support the
candidate
$H_{0}: p=0.4$
$H_{1}: p \neq 0.4$
Assume H_{0} true. $X \sim B(20,0.4)$
5\% significance level
Reject H_{0} if $P\left(X \leq x_{1}\right)<0.01$
$P(X \leq 3)=0.0159 \ldots>0.01$

$$
\text { or } \quad P\left(X \geq x_{2}\right)<0.01
$$

$$
P(X \leq 2)=0.0036 \ldots<0.01
$$

$$
\begin{array}{ll}
\therefore x_{1}=2 & P\left(X \leq x_{2}-1\right)<-0.9 \\
\left.\hline x_{2}-1\right)>0.99
\end{array}
$$

$$
P\left(X \leq x_{2}-1\right)>0.99
$$

$$
P(X \leq 12)=0.9789 \ldots<0.99
$$

$$
P(X \leq 13)=0.9935 \ldots>0.99
$$

$$
x_{2}-1=13
$$

$$
\therefore x_{2}=14
$$

Lower tail: $0 \leq X \leq 2$
Upper tail $14 \leq X \leq 20$
Critical regions: Reject H_{0} if $0 \leq X \leq 2 \cup 14 \leq X \leq 20$
b) 14 is not in the critical region.

The result is significant.
Sufficient evidence to reject H_{0}.
Sufficient evidence to reject the candidate's belief.

Your turn

In a manufacturing process, the proportion of faulty lightbulbs is, based on historical data, 0.08 . The manufacturing process is changed. A sample of 200 lightbulbs is tested. 7 lightbulbs are found to be faulty. Test, at the 2% significance level, whether or not there has been a change in the proportion of faulty lightbulbs.

In a manufacturing process, the proportion of faulty bolts is, based on historical data, 0.07 .
The manufacturing process is changed.
A sample of 100 bolts is tested.
1 bolt is found to be faulty.
Test, at the 1% significance level, whether or not there has been a change in the proportion of faulty bolts.
$X=$ number of fault bolts
$p=$ probability/proportion of faulty bolts
$H_{0}: p=0.07$
$H_{1}: p<0.07$
Assume H_{0} true. $X \sim B(100,0.07)$
1% significance level
Reject H_{0} if $P(X \leq 1)<0.005$
Test $P(X \leq 1)=0.0060 \ldots>0.005$
The result is not significant.
Insufficient evidence to reject H_{0}
Insufficient evidence to suggest there has been a change
in the proportion of faulty bolts.

Worked example

Your turn

In a manufacturing process, the proportion of faulty lightbulbs is, based on historical data, 0.08.
The manufacturing process is changed.
The manager wants to test whether or not the proportion of faulty lightbulbs has changed.
A sample of 200 lightbulbs is tested.
a) Find the critical region(s) for a test at the 2% significance level.
b) 7 lightbulbs are found to be faulty. Comment on this observation in light of the critical region.

In a manufacturing process, the proportion of faulty bolts is, based on historical data, 0.07.
The manufacturing process is changed.
The manager wants to test whether or not the proportion of faulty bolts has changed.
A sample of 100 bolts is tested.
a) Find the critical region(s) for a test at the 1% significance level.
b) 1 bolt is found to be faulty. Comment on this observation in light of the critical region.
a) $X=$ number of fault bolts
$p=$ probability/proportion of faulty bolts
$H_{0}: p=0.07$
$H_{1}: p<0.07$
Assume H_{0} true. $X \sim B(100,0.07)$
1% significance level
Reject H_{0} if $P\left(X \leq x_{1}\right)<0.005$

$$
P(X \leq 1)=0.0060 \ldots>0.005
$$

$$
P(X \leq 0)=0.0007 \ldots<0.005
$$

$$
\begin{gathered}
\text { or } \quad P\left(X \geq x_{2}\right)<0.005 \\
1-P\left(X \leq x_{2}-1\right)<0.005 \\
\quad P\left(X \leq x_{2}-1\right)<-0.995 \\
P\left(X \leq x_{2}-1\right)>0.995 \\
P(X \leq 13)=0.9900 \ldots<0.995 \\
P(X \leq 14)=0.9959 \ldots>0.995 \\
x_{2}-1=14 \\
\therefore x_{2}=15 \\
\text { Upper tail } 15 \leq X \leq 100
\end{gathered}
$$

Lower tail: $X=0$
Critical regions: Reject H_{0} if $X=0 \cup 15 \leq X \leq 100$
b) 1 is not in the critical region.

The result is not significant.
Insufficient evidence to reject H_{0}
Insufficient evidence to suggest the proportion of fault bolts has changed.

Worked example

Your turn

A medical team are testing the effectiveness of a new drug.
They claim that the test is successful 99.8\% of the time. They test the benefits of the drug on 4500 patients. The test is successful in 4498 cases. Is the medical team's claim supported at the 1% significance level?

A medical team are testing the effectiveness of a new drug.
They claim that the test is successful 99.5% of the time.
They test the benefits of the drug on 2500 patients.
The test is successful in 2495 cases.
Is the medical team's claim supported at the 5%
significance level?
$X=$ number of successful tests
$p=$ probability/proportion of successful tests
$H_{0}: p=0.995$
$H_{1}: p \neq 0.995$
Under $H_{0}, X \sim B(2500,0.995)$
5\% significance level
Reject H_{0} if $P(X \geq 2495)<0.025$
Test $P(X \geq 2495)=0.01464 \ldots<0.025$
The result is significant.
Sufficient evidence to reject H_{0}
Sufficient evidence to reject the medical team's claim.

Worked example

Your turn

A medical team are testing the effectiveness of a new drug.
They claim that the test is successful 99.8\% of the time. They test the benefits of the drug on 4500 patients.
a) Find the critical region(s) for a test at the 1% significance level.
b) The test is successful in 4498 cases. Comment on this observation in light of the critical region.

A medical team are testing the effectiveness of a new drug.
They claim that the test is successful 99.5% of the time.
They test the benefits of the drug on 2500 patients.
a) Find the critical region(s) for a test at the 5% significance level.
b) The test is successful in 2495 cases. Comment on this observation in light of the critical region.
a) $X=$ number of successful tests
$p=$ probability/proportion of successful tests
$H_{0}: p=0.995$
$H_{1}: p \neq 0.995$
Under $H_{0}, X \sim B(2500,0.995)$
5% significance level
Reject H_{0} if $P\left(X \leq x_{1}\right)<0.025 \quad$ or $\quad P\left(X \geq x_{2}\right)<0.025$
$P(X \leq 2480)=0.0302 \ldots>0.025 \quad 1-P\left(X \leq x_{2}-1\right)<0.025$
$\begin{array}{rlrl}P(X \leq 2479) & =0.0170 \ldots<0.025 & -P\left(X \leq x_{2}-1\right)<-0.975 \\ \therefore x_{1} & =2479 & P\left(X \leq x_{2}-1\right)>0.975\end{array}$
$\therefore x_{1}=2479 \quad P\left(X \leq x_{2}-1\right)>0.975$

$$
P(X \leq 2493)=0.9657 \ldots<0.975
$$

$$
P(X \leq 2494)=0.9853 \ldots>0.975
$$

$$
x_{2}-1=2494
$$

Lower tail: $0 \leq X \leq 2479$

$$
\therefore x_{2}=2495
$$

Upper tail $2495 \leq x \leq 2500$
Critical regions: Reject H_{0} if $0 \leq X \leq 2479 \cup 2495 \leq x \leq 2500$
b) 2495 is in the critical region.

The result is significant.
Sufficient evidence to reject H_{0}
Sufficient evidence to reject the medical team's claim.

Worked example

Your turn

A medical team are testing the effectiveness of a new drug.
They claim that the test is successful 99.8\% of the time. They test the benefits of the drug on 4500 patients.
a) Find the critical region(s) for a test at the 1% significance level.
b) The test is successful in 4482 cases. Comment on this observation in light of the critical region.

A medical team are testing the effectiveness of a new drug.
They claim that the test is successful 99.5\% of the time.
They test the benefits of the drug on 2500 patients.
a) Find the critical region(s) for a test at the 5% significance level.
b) The test is successful in 2480 cases. Comment on this observation in light of the critical region.
a) $X=$ number of successful tests
$p=$ probability/proportion of successful tests
$H_{0}: p=0.995$
$H_{1}: p \neq 0.995$
Under $H_{0}, X \sim B(2500,0.995)$
5% significance level
Reject H_{0} if $P\left(X \leq x_{1}\right)<0.025 \quad$ or $\quad P\left(X \geq x_{2}\right)<0.025$
$P(X \leq 2480)=0.0302 \ldots>0.025 \quad 1-P\left(X \leq x_{2}-1\right)<0.025$
$\begin{array}{rlrl}P(X \leq 2479) & =0.0170 \ldots<0.025 & -P\left(X \leq x_{2}-1\right)<-0.975 \\ \therefore x_{1} & =2479 & P\left(X \leq x_{2}-1\right)>0.975\end{array}$
$\therefore x_{1}=2479 \quad P\left(X \leq x_{2}-1\right)>0.975$

$$
P(X \leq 2493)=0.9657 \ldots<0.975
$$

$$
P(X \leq 2494)=0.9853 \ldots>0.975
$$

$$
x_{2}-1=2494
$$

Lower tail: $0 \leq X \leq 2479$

$$
\therefore x_{2}=2495
$$

Upper tail $2495 \leq x \leq 2500$
Critical regions: Reject H_{0} if $0 \leq X \leq 2479 \cup 2495 \leq x \leq 2500$
b) 2480 is not in the critical region.

The result is not significant.
Insufficient evidence to reject H_{0}
Insufficient evidence to reject the medical team's claim.

