7.4) Mathematical proof

Worked example	Your turn
Prove that $(2x-3)(x-7)(x+5) \equiv 2x^3 - 7x^2 - 64x + 105$	Prove that $(3x + 2)(x - 5)(x + 7) \equiv 3x^3 + 8x^2 - 101x - 70$
	Proof

Worked example	Your turn
Prove that if three consecutive even integers are the sides of a right-angled triangle, they must be 6, 8 and 10.	Prove that if three consecutive integers are the sides of a right-angled triangle, they must be 3, 4 and 5.
	Proof e.g. Pythagoras' Theorem with $x, x + 1, x + 2$

Prove that $x^2 + 6x + 11$ is positive for all values of x.

Prove that $x^2 + 4x + 5$ is positive for all values of x.

$$x^{2} + 4x + 5 = (x + 2)^{2} + 1$$

$$k^{2} \ge 0$$

$$(x + 2)^{2} \ge 0$$

$$(x + 2)^{2} + 1 \ge 1$$

Worked example	Your turn
Prove that the sum of the squares of two consecutive even numbers is 4 more than a multiple of 8.	Prove that the sum of the squares of two consecutive odd numbers is 2 more than a multiple of 8.
	Proof

Worked example	Your turn
Prove that $(1, 1)$, $(4, 7)$ and $(10, 4)$ are the vertices of a right-angled triangle.	Prove that $(1, 1)$, $(3, 3)$ and $(4, 2)$ are the vertices of a right-angled triangle.
	Proof e.g. Pythagoras' Theorem or perpendicular gradients AB and BC

Worked example	Your turn
The equation $kx^2 + 5kx + 3 = 0$, where k is a constant, has no real roots. Prove that k satisfies the inequality $0 \le k < \frac{12}{25}$	The equation $kx^2 + 3kx + 2 = 0$, where k is a constant, has no real roots. Prove that k satisfies the inequality $0 \le k < \frac{8}{9}$
25	Proof

Worked example	Your turn
Prove that $4n - 3 + 2n + 7$ is a multiple of 2 for all real integers n	Prove that $4n - 3 + 10n - 11$ is a multiple of 7 for all real integers n $14n - 14$ $\equiv 7(2n - 2)$ $\equiv 7k$
Prove that $4n - 3 + 2n - 9$ is a multiple of 3 for all real integers n	

Worked example	Your turn
consecutive integers is a multiple consecution of 5.	that the sum of three ecutive integers is a multiple ne first integer be n : $n+n+1+n+2$ $\equiv 3n+3$ $\equiv 3(n+1)$

Worked example	Your turn
Prove that the product of two odd numbers is an odd number.	Prove that the product of two even numbers is an even number.
	Let even numbers be $2m$ and $2n$: $2m \times 2n$
	$\equiv 4mn$
	$\equiv 2(2mn)$

Prove algebraically that $n^2 - 2 - (n-2)^2$ is always even, given n is an integer greater than 1

Prove algebraically that $(2n+1)^2 - (2n+1)$ is an even number

$$(2n+1)^2 - (2n+1)$$

$$\equiv 4n^2 + 4n + 1 - 2n - 1$$

$$\equiv 4n^2 + 2n$$

$$\equiv 2(2n^2 + n)$$

e Your turn

Prove that $(n + 1)^2 - n^2$ is one more than a multiple of 2 for all positive integer values of n

$$(n+1)^2 - n^2$$

$$\equiv n^2 + 2n + 1 - n^2$$

$$\equiv 2n + 1$$

Prove that $(2n + 3)^2 - (2n - 3)^2$ is a multiple of 8 for all positive integer values of n

Prove that $(3n + 2)^2 - (3n - 2)^2$ is a multiple of 8 for all positive integer values of n $(3n + 2)^2 - (3n - 2)^2$

$$\equiv 8(3n)$$

Worked example	Your turn
Prove algebraically that the difference between two different odd numbers is an even number.	Prove algebraically that the difference between two different even numbers is an even number.
	Let even numbers be $2m$ and $2n$: $2m - 2n$ $\equiv 2(m - n)$

Worked example	Your turn
Worked example Prove that the product of four consecutive integers is always a multiple of 8	Prove that the product of three consecutive integers is always a multiple of 6 Proof by showing at least one is a multiple of 2, and one will be a multiple of 3

Your turn ive values Prove that, for all positive values where a of $n \frac{(n+2)^2 - (n+1)^2}{n} = \frac{a}{n}$ and find

of n, $\frac{(n+2)^2-(n+1)^2}{2n^2+3n} = \frac{a}{b}$ and find the integers a and b

$$a = 1, b = n$$