Second Order Non-Homogenous DE's

Non – homogeneous, second order DE's have the form

$$a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = \boldsymbol{f}(\boldsymbol{x})$$

Question: Start by considering the solution to the 1st order DE: $\frac{dy}{dx} + 2y = 3x - 1$

Consider another example with the same LHS:

$$\frac{dy}{dx} + 2y = e^{3x}$$

Solving a Second Order, Non – Homogeneous DE

How do we find the Particular Integral?

To find a particular integral you need to establish a **trial function** whose form depends on the form of f(x).

Function $(f(x))$	Form of Particular Integral
p	λ
p + qx	$\lambda + \mu x$
$p + qx + rx^2$	$\lambda + \mu x + \nu x^2$
pe ^{kx}	λe^{kx}
$pcos\omega x + qsin\omega x$	$\lambda cos\omega x + \mu sin\omega x$
рсоѕωх	$\lambda cos\omega x + \mu sin\omega x$

The Particular Integral is a function which satisfies the original DE. We take our trial form and sub it back into the DE to find the value of the coefficients.

<u>Example</u>

Find the **particular integral** of the differential equation $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 3$

Find the **general solution** of the differential equation $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 2x$

Find the **general solution** of the differential equation $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 3x^2$

Find the **general solution** of the differential equation $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = e^x$

Interesting (and important) Example!

Find the **general solution** of the differential equation $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = e^{2x}$

Find the **general solution** of the differential equation $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} = 3$