7.3) One-tailed tests

Worked example	Your turn
Joan believes a six-sided dice is biased in favour of rolling a 4. She rolls the dice 10 times and rolls a 4 five times. Using a 5% significance level, test her belief.	John believes a coin is biased in favour of landing with tails uppermost. He tosses the coin 8 times and it lands on tails 7 times. Using a 5% significance level, test his belief. X = number of times coin lands with tails uppermost p = probability/proportion of times coin lands with tails uppermost $H_0: p = 0.5$ $H_1: p > 0.5$ Assume H_0 true. $X \sim B(8, 0.5)$ 5% significance level Reject H_0 if $P(X \ge 7) < 0.05$ Test $P(X \ge 7)$ $= 1 - P(X \le 6)$ = 0.0351 < 0.05 The result is significant. Sufficient evidence to reject H_0 Sufficient evidence to support John's belief that the coin is biased in favour of landing with tails uppermost.

Worked example	Your turn
 Joan believes a six-sided dice is biased in favour of rolling a 4. She rolls the dice 10 times and rolls a 4 five times. a) Using a 5% significance level, find the critical region to test her belief. b) Joan rolled a 4 three times. Comment on this observation in light of the critical region. 	John believes a coin is biased in favour of landing with tails uppermost. He tosses the coin 8 times. a) Using a 5% significance level, find the critical region to test his belief. b) The coin landed on tails 7 times. Comment on this observation in light of the critical region. a) $X =$ number of times coin lands with tails uppermost p = probability/proportion of times coin lands with tails uppermost $H_0: p = 0.5$ $H_1: p > 0.5$ Assume H_0 true. $X \sim B(8, 0.5)$ 5% significance level Reject H_0 if $P(X \ge x) < 0.05$ $1 - P(X \le x - 1) < 0.05$ $-P(X \le x - 1) < -0.95$ $P(X \le 5) = 0.8554 \dots < 0.95$ $P(X \le 5) = 0.8554 \dots < 0.95$ $P(X \le 6) = 0.9648 \dots > 0.95$ x - 1 = 6 $\therefore x = 7$ Critical region: Reject H_0 if $7 \le X \le 8$ b) 7 is in the critical region. The result is significant. Sufficient evidence to reject H_0 Sufficient evidence to support John's belief that the coin is biased in favour of landing with tails uppermost

Worked example	Your turn
An election candidate believes he has the support of 30% of the residents in a particular town. A researcher wants to test, at the 10% significance level, whether the candidate is over-estimating his support. The researcher asks 30 people whether they support the candidate or not. 6 people say they support the candidate. Carry out a hypothesis test for the researcher.	An election candidate believes she has the support of 40% of the residents in a particular town. A researcher wants to test, at the 5% significance level, whether the candidate is over-estimating her support. The researcher asks 20 people whether they support the candidate or not. 4 people say they support the candidate. Carry out a hypothesis test for the researcher. X = number of people who say they support the candidate p = probability/proportion of people who say they support the candidate $H_0: p = 0.4$ $H_1: p < 0.4$ Assume H_0 true. $X \sim B(20, 0.4)$ 5% significance level Reject H_0 if $P(X \le 4) < 0.05$ Test $P(X \le 4)$ = 0.0509 > 0.05 The result is not significant. Insufficient evidence to reject H_0 Insufficient evidence to suggest the candidate is over-estimating her support.

Your turn
didate believes she has the support of 40% is in a particular town. ants to test, at the 5% significance level, indidate is over-estimating her support. asks 20 people whether they support the ot. itical region for this test. ay they support the candidate. Comment ervation in light of the critical region. of people who say they support the //proportion of people who say they indidate $X \sim B(20, 0.4)$ elevel $X \leq x$ > 0.05 0159 > 0.05 0159 > 0.05 0159 < 0.05 Reject H_0 if $0 \leq X \leq 3$ e critical region. t significant. dence to reject H_0 dence to suggest the candidate is over- support.
s a natitive control and the control of the control

Worked example	Your turn
An election candidate believes he has the support of 30% of the residents in a particular town. A researcher wants to test, at the 1% significance level, whether the candidate is under-estimating his support. The researcher asks 30 people whether they support the candidate or not. 14 people say they support the candidate. Carry out a hypothesis test for the researcher.	An election candidate believes she has the support of 40% of the residents in a particular town. A researcher wants to test, at the 2% significance level, whether the candidate is under-estimating her support. The researcher asks 20 people whether they support the candidate or not. 14 people say they support the candidate. Carry out a hypothesis test for the researcher. X = number of people who say they support the candidate p = probability/proportion of people who say they support the candidate $H_0: p = 0.4$ $H_1: p > 0.4$ Assume H_0 true. $X \sim B(20, 0.4)$ 5% significance level Reject H_0 if $P(X \ge 14) < 0.02$ Test $P(X \ge 14)$ $= 1 - P(X \le 13)$ $= 0.00646 \dots < 0.02$ The result is significant. Sufficient evidence to reject H_0 Sufficient evidence to suggest the candidate is under-estimating her support.

Worked example	Your turn
 An election candidate believes he has the support of 30% of the residents in a particular town. A researcher wants to test, at the 1% significance level, whether the candidate is under-estimating his support. The researcher asks 30 people whether they support the candidate or not. a) Find the critical region for this test. b) 14 people say they support the candidate. Comment on this observation in light of the critical region. 	 An election candidate believes she has the support of 40% of the residents in a particular town. A researcher wants to test, at the 2% significance level, whether the candidate is under-estimating her support. The researcher asks 20 people whether they support the candidate or not. a) Find the critical region for this test. b) 14 people say they support the candidate. Comment on this observation in light of the critical region.
	a) $X =$ number of people who say they support the candidate p = probability/proportion of people who say they support the candidate $H_0: p = 0.4$ $H_1: p > 0.4$ Assume H_0 true. $X \sim B(20, 0.4)$ 5% significance level Reject H_0 if $P(X \ge x) < 0.02$ $1 - P(X \le x - 1) < 0.02$ $-P(X \le x - 1) < 0.02$ $P(X \le x - 1) > 0.98$ $P(X \le 12) = 0.9789 \dots < 0.98$ $P(X \le 13) = 0.9935 \dots > 0.98$ x - 1 = 13 $\therefore x = 14$ Critical region: Reject H_0 if $14 \le X \le 20$ b) 14 is in the critical region. The result is significant. Sufficient evidence to reject H_0 Sufficient evidence to suggest the candidate is under-estimating her support.

Worked example	Your turn
In a manufacturing process, the proportion of faulty lightbulbs is, based on historical data, 0.08. The manufacturing process is changed. A sample of 200 lightbulbs is tested. 8 lightbulbs are found to be faulty. The manager wishes to test at the 2% significance level whether or not there has been a reduction in the proportion of faulty lightbulbs. Carry out this hypothesis test.	In a manufacturing process, the proportion of faulty bolts is, based on historical data, 0.07. The manufacturing process is changed. A sample of 100 bolts is tested. 2 bolts are found to be faulty. The manager wishes to test at the 1% significance level whether or not there has been a reduction in the proportion of faulty bolts. Carry out this hypothesis test. X = number of fault bolts p = probability/proportion of faulty bolts $H_0: p = 0.07$ $H_1: p < 0.07$ Assume H_0 true. $X \sim B(100, 0.07)$ 1% significance level Reject H_0 if $P(X \le 2) < 0.01$ Test $P(X \le 2)$ = 0.0257 > 0.01 The result is not significant. Insufficient evidence to reject H_0 Insufficient evidence to suggest there has been a reduction in the proportion of faulty bolts.

Worked example	Your turn
 In a manufacturing process, the proportion of faulty lightbulbs is, based on historical data, 0.08. The manufacturing process is changed. The manager wishes to test at the 2% significance level whether or not there has been a reduction in the proportion of faulty lightbulbs. A sample of 200 lightbulbs is tested. a) Find the critical region for this test. b) 8 lightbulbs are found to be faulty. Comment on this observation in light of the critical region. 	In a manufacturing process, the proportion of faulty bolts is, based on historical data, 0.07. The manufacturing process is changed. The manager wishes to test at the 1% significance level whether or not there has been a reduction in the proportion of faulty bolts. A sample of 100 bolts is tested. a) Find the critical region for this test. b) 2 bolts are found to be faulty. Comment on this observation in light of the critical region. a) $X =$ number of fault bolts p = probability/proportion of faulty bolts $H_0: p = 0.07$ $H_1: p < 0.07$ Assume H_0 true. $X \sim B(100, 0.07)$ 1% significance level Reject H_0 if $P(X \le x) < 0.01$ $P(X \le 2) = 0.0257 > 0.01$ $P(X \le 1) = 0.0060 < 0.01$ $\therefore x = 1$ Critical region: Reject H_0 if $0 \le X \le 1$ b) 2 is not in the critical region. The result is not significant. Insufficient evidence to reject H_0 Insufficient evidence to suggest there has been a reduction in the proportion of faulty bolts.

Worked example	Your turn
A medical team are testing the effectiveness of a new drug. They claim that the test is successful more than 99.8% of the time. They test the benefits of the drug on 4500 patients. The test is successful in 4498 cases. Is there enough evidence, at the 1% significance level, to support the medical team's claim?	A medical team are testing the effectiveness of a new drug. They claim that the test is successful more than 99.5% of the time. They test the benefits of the drug on 2500 patients. The test is successful in 2494 cases. Is there enough evidence, at the 5% significance level, to support the medical team's claim? X = number of successful tests p = probability/proportion of successful tests $H_0: p = 0.995$ $H_1: p > 0.995$ Assume H_0 true. $X \sim B(2500, 0.995)$ 5% significance level Reject H_0 if $P(X \ge 2494) < 0.05$ Test $P(X \ge 2494) = 0.0342 < 0.05$ The result is significant. Sufficient evidence to reject H_0 Sufficient evidence to support the medical team's claim

Worked example	Your turn
A medical team are testing the effectiveness of a new drug. They claim that the test is successful more than 99.8% of the time. They test the benefits of the drug on 4500 patients. The test is successful in 4497 cases. Is there enough evidence, at the 1% significance level, to support the medical team's claim?	A medical team are testing the effectiveness of a new drug. They claim that the test is successful more than 99.5% of the time. They test the benefits of the drug on 2500 patients. The test is successful in 2493 cases. Is there enough evidence, at the 5% significance level, to support the medical team's claim? X = number of successful tests p = probability/proportion of successful tests $H_0: p = 0.995$ $H_1: p > 0.995$ Assume H_0 true. $X \sim B(2500, 0.995)$ 5% significance level Reject H_0 if $P(X \ge 2493) < 0.05$ The result is not significant. Insufficient evidence to reject H_0 Insufficient evidence to support the medical team's claim

Worked example	Your turn
A medical team are testing the effectiveness of a new drug. They claim that the test is successful more than 99.8% of the time. They test the benefits of the drug on 4500 patients. a) Find the critical region for this test at the 1% significance level. b) The test is successful in 4498 cases. Comment on this observation in light of the critical region.	A medical team are testing the effectiveness of a new drug. They claim that the test is successful more than 99.5% of the time. They test the benefits of the drug on 2500 patients. a) Find the critical region for this test at the 5% significance level. b) The test is successful in 2493 cases. Comment on this observation in light of the critical region. a) $X =$ number of successful tests p = probability/proportion of successful tests $H_0: p = 0.995$ $H_1: p > 0.995$ Under $H_0, X \sim B(2500, 0.995)$ 5% significance level Reject H_0 if $P(X \ge x) < 0.05$ $1 - P(X \le x - 1) < 0.05$ $-P(X \le x - 1) < 0.95$ $P(X \le 2492) = 0.9306 \dots < 0.95$ $P(X \le 2492) = 0.9306 \dots < 0.95$ x - 1 = 2493 $\therefore x = 2494$ Critical region: Reject H_0 if $2494 \le x \le 2500$ b) 2494 is in the critical region. The result is significant. Sufficient evidence to reject H_0 Sufficient evidence to support the medical team's claim

Worked example	Your turn
A medical team are testing the negative side effects of a new drug. They claim that the drug gives negative side effects less than 0.2% of the time. They test the drug on 4500 patients. The drug has negative side effects in 2 patients. Is there enough evidence, at the 1% significance level, to support the medical team's claim?	A medical team are testing the negative side effects of a new drug. They claim that the drug gives negative side effects less than 0.5% of the time. They test the drug on 2500 patients. The drug has negative side effects in 3 patients. Is there enough evidence, at the 5% significance level, to support the medical team's claim? X = number of tests with negative side effects p = probability/proportion of tests with negative side effects $H_0: p = 0.005$ $H_1: p < 0.005$ Assume H_0 true. $X \sim B(2500, 0.005)$ 5% significance level Reject H_0 if $P(X \le 3) < 0.05$ Test $P(X \le 3) = 0.001525 < 0.05$ The result is significant. Sufficient evidence to reject H_0 Sufficient evidence to support the medical team's claim

Worked example	Your turn
A medical team are testing the negative side effects of a new drug. They claim that the drug gives negative side effects less than 0.2% of the time. They test the drug on 4500 patients. The drug has negative side effects in 5 patients. Is there enough evidence, at the 1% significance level, to support the medical team's claim?	A medical team are testing the negative side effects of a new drug. They claim that the drug gives negative side effects less than 0.5% of the time. They test the drug on 2500 patients. The drug has negative side effects in 7 patients. Is there enough evidence, at the 5% significance level, to support the medical team's claim? X = number of tests with negative side effects p = probability/proportion of tests with negative side effects $H_0: p = 0.005$ $H_1: p < 0.005$ Assume H_0 true. $X \sim B(2500, 0.005)$ 5% significance level Reject H_0 if $P(X \le 7) < 0.05$ The result is not significant. Insufficient evidence to reject H_0 Insufficient evidence to support the medical team's claim
Is there enough evidence, at the 1% significance	Is there enough evidence, at the 5% significance level, to support the medical team's claim? X = number of tests with negative side effects p = probability/proportion of tests with negative side effects $H_0: p = 0.005$ $H_1: p < 0.005$ Assume H_0 true. $X \sim B(2500, 0.005)$ 5% significance level Reject H_0 if $P(X \le 7) < 0.05$ Test $P(X \le 7) = 0.0693 > 0.05$ The result is not significant. Insufficient evidence to reject H_0

Worked example	Your turn
 A medical team are testing the negative side effects of a new drug. They claim that the drug gives negative side effects less than 0.2% of the time. They test the drug on 4500 patients. a) Find the critical region for this test at the 2% significance level. b) The drug has negative side effects in 5 cases. Comment on this observation in light of the critical region. 	A medical team are testing the negative side effects of a new drug. They claim that the drug gives negative side effects less than 0.5% of the time. They test the drug on 2500 patients. a) Find the critical region for this test at the 2% significance level. b) The drug has negative side effects in 7 cases. Comment on this observation in light of the critical region. a) $X =$ number of tests with negative side effects p = probability/proportion of tests with negative side effects $H_0: p = 0.005$ $H_1: p < 0.005$ Under $H_0, X \sim B(2500, 0.005)$ 2% significance level Reject H_0 if $P(X \le x) < 0.02$ $P(X \le 6) = 0.0342 > 0.02$ $P(X \le 5) = 0.0146 < 0.02$ $\therefore x = 5$ Critical region: Reject H_0 if $0 \le X \le 5$ b) 7 is not in the critical region. The result is not significant. Insufficient evidence to reject H_0

Insufficient evidence to support the medical team's claim