Worked example

Your turn

A box of mass 20kg rests in limiting equilibrium on a rough plane inclined at 10° above the horizontal.
(a) Find the coefficient of friction between the box and the plane.
A horizontal force of magnitude $P \mathrm{~N}$ is applied to the box. Given that the box remains in equilibrium,
(b) find the maximum possible value of P.

A box of mass 10kg rests in limiting equilibrium on a rough plane inclined at 20° above the horizontal.
(a) Find the coefficient of friction between the box and the plane.
A horizontal force of magnitude $P \mathrm{~N}$ is applied to the box.
Given that the box remains in equilibrium,
(b) find the maximum possible value of P.
a) $\mu=0.36(2 \mathrm{sf})$
b) $P=82 \mathrm{~N}(2 \mathrm{sf})$

Your turn

A parcel of weight 20 N lies on a rough plane inclined at an angle of 60° to the horizontal.
A horizontal force of magnitude P Newtons acts on the parcel. The parcel is in equilibrium and on the point of slipping up the plane. The normal reaction of the plane on the parcel is 36 N . The coefficient of friction between the parcel and the plane is μ. Find:
a) The value of P
b) The value of μ

The horizontal force is removed.
c) Determine whether or not the parcel moves.

A parcel of weight 10 N lies on a rough plane inclined at an angle of 30° to the horizontal.
A horizontal force of magnitude P Newtons acts on the parcel. The parcel is in equilibrium and on the point of slipping up the plane. The normal reaction of the plane on the parcel is 18 N . The coefficient of friction between the parcel and the plane is μ. Find:
a) The value of P
b) The value of μ

The horizontal force is removed.
c) Determine whether or not the parcel moves.

a) $19 \mathrm{~N}(2 \mathrm{sf})$
b) $0.62(2 \mathrm{sf})$
c) Does not slide

