7.3) Double-angle formulae

Worked example	Your turn
Using the trigonometric angle addition formulae, derive: sin 2 <i>x</i>	Using the trigonometric angle addition formulae find: $\cos 2x$ $\cos^2 x - \sin^2 x$
tan 2 <i>x</i>	

Worked example	Your turn
Using $cos2x \equiv cos^2 x - sin^2 x$, express $cos2x$ using only terms of $cos^2 x$ and $constants$	Using $cos 2x \equiv cos^2 x - sin^2 x$, express $cos 2x$ using only terms of $sin^2 x$ and constants $1 - 2 sin^2 x$

Worked example	Your turn
Use the double-angle formulae to write as a single trigonometric ratio: $\cos^2 50^\circ - \sin^2 50^\circ$	Use the double-angle formulae to write as a single trigonometric ratio: $\cos^2 15^\circ - \sin^2 15^\circ$
	$\cos 30^\circ = \frac{\sqrt{3}}{2}$
$2\cos^2\frac{2\pi}{9} - 1$	$2\cos^2 22.5^\circ - 1$ $\cos 45^\circ = \frac{\sqrt{2}}{2}$
1 — 2 sin ² 30°	$1 - 2\sin^2\frac{\pi}{4}$ $\cos\frac{\pi}{2} = 0$

Worked example	Your turn
Use the double-angle formulae to write as a single trigonometric ratio: $\cos^2 2x - \sin^2 2x$	Use the double-angle formulae to write as a single trigonometric ratio: $\cos^2 5x - \sin^2 5x$ $\cos 10x$
$4\cos^2 3x - 2$	$8\cos^2 6x - 4$ $4\cos 12x$
$3 - 6\sin^2 4x$	$5 - 10 \sin^2 7x$ $5 \cos 14x$

Worked example	Your turn
Use the double-angle formulae to write as a single trigonometric ratio: 2 sin 45° cos 45°	Use the double-angle formulae to write as a single trigonometric ratio: $2 \sin 30^{\circ} \cos 30^{\circ}$ $\sin 60^{\circ} = \frac{\sqrt{3}}{2}$
$4\sin\frac{\pi}{12}\cos\frac{\pi}{12}$	$8\sin\frac{\pi}{4}\cos\frac{\pi}{4}$ $16\sin\frac{\pi}{2} = 16$
7 sin 5 <i>x</i> cos 5 <i>x</i>	5 sin 7 <i>x</i> cos 7 <i>x</i> 10 sin 14 <i>x</i>

Worked example	Your turn
Use the double-angle formulae to write as a single trigonometric ratio: 2 tan 30°	Use the double-angle formulae to write as a single trigonometric ratio: 2 tan 22.5°
1 – tan² 30°	$\overline{1 - \tan^2 22.5^\circ}$ $\tan 45^\circ = 1$
$\frac{2\tan\frac{\pi}{12}}{1-\tan^2\frac{\pi}{12}}$	$\frac{2\tan\frac{\pi}{4}}{1-\tan^2\frac{\pi}{4}}$
$\frac{4 \tan 6x}{1 - \tan^2 6x}$	$\frac{6 \tan 4x}{1 - \tan^2 4x}$ $\frac{3 \tan 8x}{3 \tan 8x}$

Worked example	Your turn
Use the double-angle formulae to write as a single trigonometric ratio: 8 sin 22.5°	Use the double-angle formulae to write as a single trigonometric ratio: 4 sin 30°
sec 22.5°	sec 30°
	$2\sin 60^\circ = \sqrt{3}$
$\frac{6\cos\frac{\pi}{4}}{\csc\frac{\pi}{4}}$	

Worked example	Your turn
Given that $x = 2 \sin \theta$ and $y = 4 - 3\cos 2\theta$, eliminate θ and express y in terms of x.	Given that $x = 3 \sin \theta$ and $y = 3 - 4\cos 2\theta$, eliminate θ and express y in terms of x .
	$y = \frac{8x^2}{9} - 1$
Given that $x = 5 \cos \theta$ and $y = 6 - 7\cos 2\theta$, eliminate θ and express y in terms of x .	

Worked example	Your turn
Given that $\cos x = \frac{5}{8}$ and x is acute, find the exact value of (a) $\sin 2x$ (b) $\tan 2x$	Given that $\cos x = \frac{3}{4}$ and x is acute, find the exact value of (a) $\sin 2x$ (b) $\tan 2x$
	(a) $\frac{3\sqrt{7}}{8}$ (b) $3\sqrt{7}$

Worked example	Your turn
Using the double-angle formulae, evaluate:	Using the double-angle formulae, evaluate:
$\left(\sin\frac{\pi}{3} + \cos\frac{\pi}{3}\right)^2$	$\left(\sin\frac{\pi}{6} + \cos\frac{\pi}{6}\right)^2$
	$\frac{2+\sqrt{3}}{2}$
$\left(\sin\frac{\pi}{4} - \cos\frac{\pi}{4}\right)^2$	

Worked example	Your turn
Given that $0 < \theta < \pi$, find the value of $\tan \frac{\theta}{2}$ when $\tan \theta = -\frac{3}{4}$	Given that $\pi < \theta < \frac{3\pi}{2}$, find the value of $\tan \frac{\theta}{2}$ when $\tan \theta = \frac{3}{4}$
	-3