7.2) Modelling with statics

Worked example	Your turn
A smooth bead Y is threaded on a light inextensible string. The ends of the string are attached to two fixed points, X and Y, on the same horizontal level. The bead is held in equilibrium by a horizontal force of magnitude 16 N acting parallel to ZX. The bead Y is vertically below X and $\angle XZY = 60^{\circ}$ as shown in the diagram. Find the tension in the string and the weight of the bead.	A smooth bead Y is threaded on a light inextensible string. The ends of the string are attached to two fixed points, X and Y, on the same horizontal level. The bead is held in equilibrium by a horizontal force of magnitude 8 N acting parallel to ZX. The bead Y is vertically below X and $\angle XZY = 30^{\circ}$ as shown in the diagram. Find the tension in the string and the weight of the bead.
Ŷ	Tension = 9.24 <i>N</i> (3 sf) Weight = 13.9 <i>N</i> (3 sf)

Diagrams/Graphs used with permission from prFrostMaths: <u>https://www.drfrostmaths.com/</u>

Worked example	Your turn
A mass of 6kg rests on the surface of a smooth plane which is inclined at an angle of 30° to the horizontal. The mass is attached to a cable which passes up the plane along the line of greatest slope and then passes over a smooth pulley at the top of the plane. The cable carries a mass of 2kg freely suspended at the other end. The masses are modelled as particles, and the cable as a light inextensible string. There is a force of <i>P</i> N acting horizontally on the 6kg mass and the system is in equilibrium.	A mass of 3kg rests on the surface of a smooth plane which is inclined at an angle of 45° to the horizontal. The mass is attached to a cable which passes up the plane along the line of greatest slope and then passes over a smooth pulley at the top of the plane. The cable carries a mass of 1kg freely suspended at the other end. The masses are modelled as particles, and the cable as a light inextensible string. There is a force of <i>P</i> N acting horizontally on the 3kg mass and the system is in equilibrium.
 Calculate: (a) the magnitude of <i>P</i> (b) the normal reaction between the mass and the plane (c) State how you have used the assumption that the pulley is smooth in your calculations. 	Calculate: (a) the magnitude of P (b) the normal reaction between the mass and the plane a) $P = 16 (2 \text{ sf})$ b) 32 (2 sf)

Worked example	Your turn
 A particle of weight 4 N is attached at C to the ends of two light inextensible strings AC and BC. The other ends, A and B, are attached to a fixed horizontal ceiling. The particle hangs at rest in equilibrium, with the strings in a vertical plane. The string AC is inclined at 45° to the horizontal and the string BC is inclined at 15° to the horizontal. Find: a) The tension in the string AC b) The tension in the string BC 	 A particle of weight 8 N is attached at C to the ends of two light inextensible strings AC and BC. The other ends, A and B, are attached to a fixed horizontal ceiling. The particle hangs at rest in equilibrium, with the strings in a vertical plane. The string AC is inclined at 35° to the horizontal and the string BC is inclined at 25° to the horizontal. Find: a) The tension in the string AC b) The tension in the string BC a) 8.4 N (2 sf) b) 7.6 N (2 sf)