7.2) Modelling with statics

Worked example

Your turn

A smooth bead Y is threaded on a light inextensible string. The ends of the string are attached to two fixed points, X and Y, on the same horizontal level.
The bead is held in equilibrium by a horizontal force of magnitude 16 N acting parallel to $Z X$.
The bead Y is vertically below X and $\angle X Z Y=60^{\circ}$ as shown in the diagram.
Find the tension in the string and the weight of the bead.

A smooth bead Y is threaded on a light inextensible string. The ends of the string are attached to two fixed points, X and Y, on the same horizontal level.
The bead is held in equilibrium by a horizontal force of magnitude 8 N acting parallel to $Z X$.
The bead Y is vertically below X and $\angle X Z Y=30^{\circ}$ as shown in the diagram.
Find the tension in the string and the weight of the bead.

Tension $=9.24 N(3 \mathrm{sf})$
Weight $=13.9 \mathrm{~N}(3 \mathrm{sf})$

Worked example

Your turn

A mass of 6 kg rests on the surface of a smooth plane which is inclined at an angle of 30° to the horizontal. The mass is attached to a cable which passes up the plane along the line of greatest slope and then passes over a smooth pulley at the top of the plane.
The cable carries a mass of 2 kg freely suspended at the other end.
The masses are modelled as particles, and the cable as a light inextensible string.
There is a force of $P \mathrm{~N}$ acting horizontally on the 6 kg mass and the system is in equilibrium.

Calculate:
(a) the magnitude of P
(b) the normal reaction between the mass and the plane
(c) State how you have used the assumption that the pulley is smooth in your calculations.

A mass of 3 kg rests on the surface of a smooth plane which is inclined at an angle of 45° to the horizontal. The mass is attached to a cable which passes up the plane along the line of greatest slope and then passes over a smooth pulley at the top of the plane.
The cable carries a mass of 1 kg freely suspended at the other end.
The masses are modelled as particles, and the cable as a light inextensible string.
There is a force of $P \mathrm{~N}$ acting horizontally on the 3 kg mass and the system is in equilibrium.

Calculate:
(a) the magnitude of P
(b) the normal reaction between the mass and the plane
a) $P=16(2 s f)$
b) $32(2 \mathrm{sf})$

Your turn

A particle of weight $4 N$ is attached at C to the ends of two light inextensible strings $A C$ and $B C$. The other ends, A and B, are attached to a fixed horizontal ceiling. The particle hangs at rest in equilibrium, with the strings in a vertical plane. The string $A C$ is inclined at 45° to the horizontal and the string $B C$ is inclined at 15° to the horizontal. Find:
a) The tension in the string $A C$
b) The tension in the string $B C$

A particle of weight $8 N$ is attached at C to the ends of two light inextensible strings $A C$ and $B C$.
The other ends, A and B, are attached to a fixed horizontal ceiling. The particle hangs at rest in equilibrium, with the strings in a vertical plane. The string $A C$ is inclined at 35° to the horizontal and the string $B C$ is inclined at 25° to the horizontal. Find:
a) The tension in the string $A C$
b) The tension in the string $B C$
a) $8.4 \mathrm{~N}(2 \mathrm{sf})$
b) $7.6 \mathrm{~N}(2 \mathrm{sf})$

