# 7A Part 1 First Order Differential Equations 2.0

- 1. Find the general solution of the differential equation, then sketch members of the family of solution curves represented by the general solution.
- a)

 $\frac{dy}{dx} = 2$ 



b)

 $\frac{dy}{dx} = -\frac{x}{y}$ 





Product Rule Examples (The new stuff)

- 2. Find the general solution of the following equation:
- a)

$$x^3\frac{dy}{dx} + 3x^2y = \sin x$$

b)

$$6x^2y\frac{dy}{dx} + 6xy^2 = \sec^2 x$$

$$\frac{dy}{dx} + \frac{2y}{x} = \frac{5}{4x^2}$$

# 7A Part 2 First Order Differential Equations and Integrating Factors

Notes:

Solve the general equation:

$$\frac{dy}{dx} + Py = Q$$

Where P and Q are functions of x.

1. Find the general solution of the equation:

$$\frac{dy}{dx} - 4y = e^x$$

2. Find the general solution of the equation:

$$\cos x \frac{dy}{dx} + 2y \sin x = \cos^4 x$$

# 7B Homogeneous Second Order Differential Equations

$$a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = 0$$

Solve the equation:

$$a\frac{dy}{dx} + by = 0$$

**Case 1:**  $b^2 > 4ac$ Find  $\frac{dy}{dx}$  and  $\frac{d^2y}{dx^2}$  when

 $y = Ae^{mx}$ 

Find the auxiliary equation for

$$a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = 0$$

Summary: when  $b^2 > 4ac$  then the solution will be in the form...

1. Find the general solution of the equation:

$$\frac{d^2y}{dx^2} - 7\frac{dy}{dx} + 12y = 0$$

### Case 2: b<sup>2</sup> = 4ac

Show that

$$y = (A + Bx)e^{3x}$$

Satisfies the equation:

$$\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 9y = 0$$

Summary: If  $b^2=4ac$  then the solution will be in the form...

2. Find the general solution of the equation:

$$\frac{d^2y}{dx^2} + 8\frac{dy}{dx} + 16y = 0$$

## Case 3: b<sup>2</sup> < 4ac

Find the general solution of the differential equation:

$$\frac{d^2y}{dx^2} + 16y = 0$$

3. Find the general solution of the differential equation:

$$\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 34y = 0$$

Summary: If b<sup>2</sup>=4ac then the solution will be in the form...



# 7C Particular Integrals of Second Order Differential Equations

$$a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = f(x)$$

1. Find the solution of the differential equation:

a)

$$\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 3$$

$$\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 2x$$

c)

$$\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 3x^2$$

$$\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = e^x$$

d)

$$\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 13sin3x$$

2. Find the general solution to the following differential equation:

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} = 3$$

#### Summary:

- Start by finding the Complimentary Function by setting the differential equation equal to 0, then forming the auxiliary equation (as in the previous sections)
- Find the Particular Integral by considering f(x) and letting y equal something of the same form. Then differentiate it and replace these in the original equation and solve for the unknowns
- $\rightarrow$  Use the table to the right (which you are NOT given...)
- 3) Combine the CF and PI to create the equation in y

| Form of f(x)     | Form of PI                      |
|------------------|---------------------------------|
| k                | λ                               |
| <u>kx</u>        | λx + μ                          |
| kx²              | $\lambda x^2 + \mu x + v$       |
| ke <sup>px</sup> | λepx                            |
| mcosax           | λ <u>cosax</u> + μ <u>sinax</u> |
| msinax           | λcosax + µsinax                 |
| mcosax+nsinax    | λcosax + μsinax                 |

If the form of the Particular Integral is already in the Complimentary Function, include an 'x' in it as well (as we did on the last example!)

# 7D Finding Constants of Second Order Differential Equations

1. Find y in terms of x, given that:

$$\frac{d^2y}{dx^2} - y = 2e^x$$

And that when x = 0,

$$y = 0$$
 and  $\frac{dy}{dx} = 0$ 

2. Given that the particular integral is of the form:

λsin2t

Find the solution of the differential equation:

$$\frac{d^2x}{dt^2} + x = 3sin2t$$

When t = 0, x = 0 and dx/dt = 1