7) Trigonometry and modelling

7.1) Addition formulae
7.2) Using the angle addition formulae
7.3) Double-angle formulae
7.4) Solving trigonometric equations
7.5) Simplifying $a \cos x \pm b \sin x$
7.6) Proving trigonometric identities
7.7) Modelling with trigonometric functions

7.1) Addition formulae

Chapter CONTENTS

Worked example	Your turn
Given that sin(A + B) = sin A cos B + cos A sin B find $sin(A - B)$	Given that
Given that cos(A + B) = cos A cos B - sin A sin B find $cos(A - B)$	

Worked example	Your turn
Use the formulae for $sin(A - B)$ and cos(A - B) to prove that $tan(A - B) = \frac{tan A - tan B}{1 + tan A tan B}$	Use the formulae for $sin(A + B)$ and cos(A + B) to prove that $tan(A + B) = \frac{tan A + tan B}{1 - tan A tan B}$ Proof

Worked example	Your turn
Given that $3 \sin(x - y) = 2 \cos(x + y)$ express $\tan x$ in terms of $\tan y$.	Given that $2 \sin(x + y) = 3 \cos(x - y)$ express $\tan x$ in terms of $\tan y$.
	$\tan x = \frac{3 - 2\tan y}{2 - 3\tan y}$

Worked example	Your turn
Express the following as a single sine, cosine or tangent, and evaluate: sin 30° cos 60° + cos 30° sin 60°	Express the following as a single sine, cosine or tangent, and evaluate: sin 60° cos 30° – cos 60° sin 30°
	$\sin 30^\circ = \frac{1}{2}$
$\cos 20^\circ \cos 25^\circ - \sin 20^\circ \sin 25^\circ$	$\cos 70^\circ \cos 25^\circ + \sin 70^\circ \sin 25^\circ$
	$\cos 45^\circ = \frac{\sqrt{2}}{2}$
$\frac{\tan\frac{\pi}{18} + \tan\frac{\pi}{9}}{1 - \tan\frac{\pi}{18}\tan\frac{\pi}{9}}$	$\frac{\tan\frac{13\pi}{36} - \tan\frac{\pi}{9}}{1 + \tan\frac{13\pi}{36}\tan\frac{\pi}{9}}$
	$\tan\frac{\pi}{4} = 1$

Worked example	Your turn
Write in the form $sin(x \pm \theta)$ or $cos(x \pm \theta)$ where $0 < \theta < \frac{\pi}{2}$: $\frac{1}{2}(\sqrt{3}sin x + cos x)$	Write in the form $sin(x \pm \theta)$ or $cos(x \pm \theta)$ where $0 < \theta < \frac{\pi}{2}$: $\frac{1}{2}(sin x - \sqrt{3} cos x)$
$\frac{1}{2}(\sqrt{3}\cos x - \sin x)$	$\sin(x + \frac{\pi}{3})$

Worked example	Your turn
Given that $\tan(x + \frac{\pi}{6}) = \frac{1}{2}$ evaluate $\tan x$	Given that $tan(x + \frac{\pi}{4}) = \frac{1}{2}$ evaluate $tan x$
Given that $\tan(x - \frac{\pi}{3}) = \frac{1}{2}$ evaluate $\tan x$	$\tan x = -\frac{1}{3}$

7.2) Using the angle addition formulae^{Chapter CONTENTS}

Worked example	Your turn
Using the trigonometric angle addition formulae find: sin 75°	Using the trigonometric angle addition formulae find: $\frac{\cos 75^{\circ}}{\sqrt{6} - \sqrt{2}}$
tan 75°	

Worked example	Your turn
Using the trigonometric angle addition formulae find: sin 15°	Using the trigonometric angle addition formulae find: $\frac{\cos 15^{\circ}}{\sqrt{6} + \sqrt{2}}{4}$
tan 15°	

Worked example	Your turn
Using the trigonometric angle addition formulae evaluate: sin 30° cos 60° + cos 30° sin 60°	Using the trigonometric angle addition formulae evaluate: sin 60° cos 30° — cos 60° sin 30°
	$\sin 30^\circ = \frac{1}{2}$
$\cos 20^\circ \cos 25^\circ - \sin 20^\circ \sin 25^\circ$	$\cos 70^\circ \cos 25^\circ + \sin 70^\circ \sin 25^\circ$
	$\cos 45^\circ = \frac{\sqrt{2}}{2}$
$\frac{\tan\frac{\pi}{18} + \tan\frac{\pi}{9}}{1 - \tan\frac{\pi}{18}\tan\frac{\pi}{9}}$	$\frac{\tan\frac{13\pi}{36} - \tan\frac{\pi}{9}}{1 + \tan\frac{13\pi}{36}\tan\frac{\pi}{9}}$
	$\tan\frac{\pi}{4} = 1$

Worked example	Your turn
Given that:	Given that:
$\sin A = \frac{8}{17}$ and $0^{\circ} < A < 90^{\circ}$, and	$\sin A = -\frac{3}{5}$ and $180^{\circ} < A < 270^{\circ}$, and
$\cos B = -\frac{4}{5}$, B is obtuse,	$\cos B = -\frac{12}{13}$, B is obtuse,
find the value of $cos(A + B)$	find the value of $cos(A - B)$
	33
	65

Worked example	Your turn
Given that:	Given that:
$\sin A = \frac{8}{17}$ and $0^{\circ} < A < 90^{\circ}$, and	$\sin A = -\frac{3}{5}$ and $180^{\circ} < A < 270^{\circ}$, and
$\cos B = -\frac{4}{5}$, B is obtuse,	$\cos B = -\frac{12}{13}$, B is obtuse,
find the value of $tan(A - B)$	find the value of $tan(A + B)$
	16
	63

Worked example	Your turn
Given that:	Given that:
$\sin A = \frac{8}{17}$ and $0^{\circ} < A < 90^{\circ}$, and	$\sin A = -\frac{3}{5}$ and $180^{\circ} < A < 270^{\circ}$, and
$\cos B = -\frac{4}{5}$, B is obtuse,	$\cos B = -\frac{12}{13}$, B is obtuse,
find the value of $sec(A - B)$	find the value of $cosec(A + B)$
	65
	16

Worked example	Your turn
Given that $2\cos(x - 40)^\circ = \sin(x - 50)^\circ$ show that $\tan x = 3\tan 50^\circ$	Given that $2\cos(x + 50)^\circ = \sin(x + 40)^\circ$ show that $\tan x = \frac{1}{3}\tan 40^\circ$ Shown

7.3) Double-angle formulae

Chapter CONTENTS

Worked example	Your turn
Using the trigonometric angle addition formulae, derive: sin 2 <i>x</i>	Using the trigonometric angle addition formulae find: $\cos 2x$ $\cos^2 x - \sin^2 x$
tan 2 <i>x</i>	

Worked example	Your turn
Using $cos2x \equiv cos^2 x - sin^2 x$, express $cos2x$ using only terms of $cos^2 x$ and $constants$	Using $cos 2x \equiv cos^2 x - sin^2 x$, express $cos 2x$ using only terms of $sin^2 x$ and constants $1 - 2 sin^2 x$

Worked example	Your turn
Use the double-angle formulae to write as a single trigonometric ratio: $\cos^2 50^\circ - \sin^2 50^\circ$	Use the double-angle formulae to write as a single trigonometric ratio: $\cos^2 15^\circ - \sin^2 15^\circ$
	$\cos 30^\circ = \frac{\sqrt{3}}{2}$
$2\cos^2\frac{2\pi}{9}-1$	$2\cos^2 22.5^\circ - 1$ $\cos 45^\circ = \frac{\sqrt{2}}{2}$
1 — 2 sin ² 30°	$1 - 2\sin^2\frac{\pi}{4}$ $\cos\frac{\pi}{2} = 0$

Worked example	Your turn
Use the double-angle formulae to write as a single trigonometric ratio: $\cos^2 2x - \sin^2 2x$	Use the double-angle formulae to write as a single trigonometric ratio: $\cos^2 5x - \sin^2 5x$ $\cos 10x$
$4\cos^2 3x - 2$	$8\cos^2 6x - 4$ $4\cos 12x$
$3 - 6\sin^2 4x$	$5 - 10 \sin^2 7x$ $5 \cos 14x$

Worked example	Your turn
Use the double-angle formulae to write as a single trigonometric ratio: 2 sin 45° cos 45°	Use the double-angle formulae to write as a single trigonometric ratio: $2 \sin 30^{\circ} \cos 30^{\circ}$ $\sin 60^{\circ} = \frac{\sqrt{3}}{2}$
$4\sin\frac{\pi}{12}\cos\frac{\pi}{12}$	$8\sin\frac{\pi}{4}\cos\frac{\pi}{4}$ $16\sin\frac{\pi}{2} = 16$
7 sin 5 <i>x</i> cos 5 <i>x</i>	5 sin 7 <i>x</i> cos 7 <i>x</i> 10 sin 14 <i>x</i>

Worked example	Your turn
Use the double-angle formulae to write as a single trigonometric ratio: 2 tan 30°	Use the double-angle formulae to write as a single trigonometric ratio: 2 tan 22.5°
1 – tan² 30°	$\overline{1 - \tan^2 22.5^\circ}$ $\tan 45^\circ = 1$
$\frac{2\tan\frac{\pi}{12}}{1-\tan^2\frac{\pi}{12}}$	$\frac{2\tan\frac{\pi}{4}}{1-\tan^2\frac{\pi}{4}}$
$\frac{4 \tan 6x}{1 - \tan^2 6x}$	$\frac{6 \tan 4x}{1 - \tan^2 4x}$ $\frac{3 \tan 8x}{3 \tan 8x}$

Worked example	Your turn
Use the double-angle formulae to write as a single trigonometric ratio: 8 sin 22.5°	Use the double-angle formulae to write as a single trigonometric ratio: 4 sin 30°
sec 22.5°	sec 30°
	$2\sin 60^\circ = \sqrt{3}$
$\frac{6\cos\frac{\pi}{4}}{\csc\frac{\pi}{4}}$	

Worked example	Your turn
Given that $x = 2 \sin \theta$ and $y = 4 - 3\cos 2\theta$, eliminate θ and express y in terms of x.	Given that $x = 3 \sin \theta$ and $y = 3 - 4\cos 2\theta$, eliminate θ and express y in terms of x .
	$y = \frac{8x^2}{9} - 1$
Given that $x = 5 \cos \theta$ and $y = 6 - 7\cos 2\theta$, eliminate θ and express y in terms of x .	

Worked example	Your turn
Given that $\cos x = \frac{5}{8}$ and x is acute, find the exact value of (a) $\sin 2x$ (b) $\tan 2x$	Given that $\cos x = \frac{3}{4}$ and x is acute, find the exact value of (a) $\sin 2x$ (b) $\tan 2x$
	(a) $\frac{3\sqrt{7}}{8}$ (b) $3\sqrt{7}$

Worked example	Your turn
Using the double-angle formulae, evaluate:	Using the double-angle formulae, evaluate:
$\left(\sin\frac{\pi}{3} + \cos\frac{\pi}{3}\right)^2$	$\left(\sin\frac{\pi}{6} + \cos\frac{\pi}{6}\right)^2$
	$\frac{2+\sqrt{3}}{2}$
$\left(\sin\frac{\pi}{4} - \cos\frac{\pi}{4}\right)^2$	

Worked example	Your turn
Given that $0 < \theta < \pi$, find the value of $\tan \frac{\theta}{2}$ when $\tan \theta = -\frac{3}{4}$	Given that $\pi < \theta < \frac{3\pi}{2}$, find the value of $\tan \frac{\theta}{2}$ when $\tan \theta = \frac{3}{4}$
	-3

7.4) Solving trigonometric equations Chapter CONTENTS

Worked example	Your turn
Solve in the interval $0 \le x \le 360^{\circ}$: $8\sin(\theta + 60^{\circ}) = 4\sqrt{2}\cos\theta$	Solve in the interval $0 \le x \le 360^{\circ}$: $4\sin(\theta + 30^{\circ}) = 8\sqrt{2}\cos\theta$
	$\theta = 69.6^{\circ}, 249.6^{\circ} (1 \text{ dp})$

Worked example	Your turn
Solve in the interval $0 \le x \le 360^\circ$: $8\cos(\theta - 60^\circ) = 4\sqrt{2}\sin\theta$	Solve in the interval $0 \le x \le 360^\circ$: $4\cos(\theta - 30^\circ) = 8\sqrt{2}\sin\theta$ $\theta = 20.4^\circ, 200.4^\circ$ (1 dp)

Worked example	Your turn
Solve in the interval $0 \le x \le 360^\circ$: $3\cos 2x + \cos x + 2 = 0$	Solve in the interval $0 \le x \le 360^\circ$: $3\cos 2x - \cos x + 2 = 0$
	$x = 60.0^{\circ}, 109.5^{\circ}, 250.5^{\circ}, 300.0^{\circ} (1 \text{ dp})$

Worked example	Your turn
Solve in the interval $0 \le x \le 360^\circ$: $3\cos 2x - \sin x - 2 = 0$	Solve in the interval $0 \le x \le 360^\circ$: $3\cos 2x + \sin x - 2 = 0$
	$x = 30.0^{\circ}, 150.0^{\circ}, 199.5^{\circ}, 340.5^{\circ} (1 \text{ dp})$

Worked example	Your turn
Solve in the interval $0 \le x \le 360^\circ$: $5 \sin 2x + 4 \sin x = 0$	Solve in the interval $0 \le x \le 360^\circ$: $5 \sin 2x - 4 \sin x = 0$
	x = 0.0°, 66.4°, 180.0°, 199.5°, 293.6°, 360.0° (1 dp)
$4\sin 2x - 5\cos x = 0$	

Worked example	Your turn
Solve in the interval $0 \le y \le 2\pi$: $3 \tan 2y \tan y = 2$	Solve in the interval $0 \le y \le 2\pi$: 2 tan 2y tan $y = 3$
	y = 0.58, 2.56, 3.72, 5.70 (2 dp)

	Worked example	Your turn
a) b)	Show that $\cos(3A) = 4\cos^3 A - 3\cos A$. Hence or otherwise, solve, for $0 < \theta < 2\pi$, the equation $12\cos\theta - 16\cos^3\theta - 2\sqrt{3} = 0$	a) Show that $\sin(3A) = 3 \sin A - 4 \sin^3 A$. b) Hence or otherwise, solve, for $0 < \theta < 2\pi$, the equation $16 \sin^3 \theta - 12 \sin \theta - 2\sqrt{3} = 0$ a) Shown b) $\theta = \frac{4\pi}{9}, \frac{5\pi}{9}, \frac{10\pi}{9}, \frac{11\pi}{9}, \frac{16\pi}{9}, \frac{17\pi}{9}$

7.5) Simplifying $a \cos x \pm b \sin x$ Chapter CONTENTS

Worked example	Your turn
Express $5 \sin x + 12 \cos x$ in the form: $R \sin(x + \alpha), R > 0, 0 < \alpha < 90^{\circ}$	Express $3 \sin x + 4 \cos x$ in the form: $R \sin(x + \alpha), R > 0, 0 < \alpha < 90^{\circ}$
	$5\sin(x + 53.1^{\circ})$

Worked example	Your turn
Express $5 \sin x + 12 \cos x$ in the form: $R \cos(x - \alpha), R > 0, 0 < \alpha < 90^{\circ}$	Express $3 \sin x + 4 \cos x$ in the form: $R \cos(x - \alpha), R > 0, 0 < \alpha < 90^{\circ}$
	$5\cos(x - 36.9^{\circ})$

Worked example	Your turn
Express $5 \sin x + 12 \cos x$ in the form: $R \sin(x - \alpha), R > 0, 0 < \alpha < 180^{\circ}$	Express $3 \sin x + 4 \cos x$ in the form: $R \sin(x - \alpha), R > 0, 0 < \alpha < 180^{\circ}$
	$5\sin(x + 126.9^{\circ})$

Worked example	Your turn
Express $5 \sin x + 12 \cos x$ in the form: $R \cos(x + \alpha), R > 0, 0 < \alpha < 180^{\circ}$	Express $3 \sin x + 4 \cos x$ in the form: $R \cos(x + \alpha), R > 0, 0 < \alpha < 180^{\circ}$
	$5\cos(x + 143.1^{\circ})$

Worked example	Your turn
Solve in the interval $0 < \theta < 360^{\circ}$: $5 \cos \theta + 2 \sin \theta = 3$	Solve in the interval $0 < \theta < 360^{\circ}$: $2\cos\theta + 5\sin\theta = 3$
	$\theta = 12.1^{\circ}, 124.3^{\circ} (1 \text{ dp})$

Worked example	Your turn
Solve in the interval $0 \le \theta < 180^{\circ}$: $5 \sin 3\theta - 12 \cos 3\theta = 1$	Solve in the interval $0 \le \theta < 180^{\circ}$: $3 \sin 3\theta - 4 \cos 3\theta = 1$
	$\theta = 21.6^{\circ}, 73.9^{\circ}, 141.6^{\circ} (1 \text{ dp})$

Worked example	Your turn
Solve in the interval $0 \le \theta < 180^{\circ}$: $5 \cos 3\theta - 12 \sin 3\theta = 1$	Solve in the interval $0 \le \theta < 180^{\circ}$: $3 \cos 3\theta - 4 \sin 3\theta = 1$
	$\theta = 8.4^{\circ}, 76.1^{\circ}, 128.4^{\circ}$ (1 dp)

Worked example	Your turn
Solve in the interval $0 \le \theta < 360^{\circ}$: $\cot \theta + 4 = \csc \theta$	Solve in the interval $0 \le \theta < 360^{\circ}$: $\cot \theta + 3 = \csc \theta$
	$\theta = 143.1^{\circ} (1 \text{ dp})$

Worked example	Your turn
Find the maximum value and the smallest positive value of θ at which the maximum occurs for: $4\cos\theta + 3\sin\theta$	Find the maximum value and the smallest positive value of θ at which the maximum occurs for: 12 cos θ + 5 sin θ
	Maximum = 13 when θ = 22.6° (1 dp)

Worked example	Your turn
Find the minimum value and the smallest positive value of θ at which the minimum occurs for: $4\cos\theta + 3\sin\theta$	Find the minimum value and the smallest positive value of θ at which the minimum occurs for: 12 cos θ + 5 sin θ
	Minimum = -13 when $\theta = 202.6^{\circ}$ (1 dp)

Worked example	Your turn
Find the maximum value and the smallest positive value of θ at which the maximum occurs for: $\frac{5}{7 + 4\cos\theta - 3\sin\theta}$	Find the maximum value and the smallest positive value of θ at which the maximum occurs for: $\frac{3}{17 + 12\cos\theta - 5\sin\theta}$ $Maximum = \frac{3}{4} \text{ when } \theta = 157.4^{\circ} (1 \text{ dp})$

Worked example	Your turn
Find the minimum value and the smallest positive value of θ at which the minimum occurs for: $\frac{5}{7 + 4\cos\theta - 3\sin\theta}$	Find the minimum value and the smallest positive value of θ at which the minimum occurs for: $\frac{3}{17 + 12\cos\theta - 5\sin\theta}$ Minimum = $\frac{1}{2}$ when $\theta = 337.4^{\circ}$ (1 dp)
	10

7.6) Proving trigonometric identities Chapter CONTENTS

Worked example	Your turn
Prove that: $\cot 2\theta \equiv \frac{\cot \theta - \tan \theta}{2}$	Prove that: $\tan 2\theta \equiv \frac{2}{\cot \theta - \tan \theta}$
	Proof

Worked example	Your turn
Prove that: $\frac{-\sin 2\theta}{\cos 2\theta - 1} \equiv \cot \theta$	Prove that: $\frac{1 - \cos 2\theta}{\sin 2\theta} \equiv \tan \theta$
	Proof

Worked example	Your turn
Prove that: $\cot 2x - \csc 2x \equiv -\tan x$	Prove that: $\cot 2x + \csc 2x \equiv \cot x$
	Proof

Worked example	Your turn
Prove, starting with the left-hand side: $\tan 2x + \sec 2x \equiv \frac{\cos x + \sin x}{\cos x - \sin x}$	Prove, starting with the right-hand side: $\tan 2x + \sec 2x \equiv \frac{\cos x + \sin x}{\cos x - \sin x}$
	Proof

Worked example	Your turn
Show that:	Show that:
$\sin^4 \theta = \frac{3}{8} - \frac{1}{2}\cos 2\theta + \frac{1}{8}\cos 4\theta$	$\cos^4 \theta = \frac{3}{8} + \frac{1}{2}\cos 2\theta + \frac{1}{8}\cos 4\theta$
	Shown

Worked example	Your turn
Worked example By writing $\cos x = \cos \left(2 \times \frac{x}{2}\right)$, prove the identity $\frac{1 + \cos x}{1 - \cos x} \equiv \cot^2 \left(\frac{x}{2}\right)$	Your turn By writing $\cos x = \cos \left(2 \times \frac{x}{2}\right)$, prove the identity $\frac{1 - \cos x}{1 + \cos x} \equiv \tan^2 \left(\frac{x}{2}\right)$ Proof

7.7) Modelling with trigonometric functions^{Chapter CONTENTS}

Worked example	Your turn
The cabin pressure, P (psi) on an aeroplane at cruising altitude can be modelled by the equation $P = 14.5 - 0.2 \sin(t - 3)$ where t is the time in hours since cruising altitude was first reached, and angles are in radians. Find: a) The maximum and minimum cabin pressure b) The time after reaching cruising altitude that the cabin first reaches a maximum pressure c) The cabin pressure after 3 hours at cruising altitude d) All the times within the first 10 hours of cruising that the cabin pressure would be exactly 14.42 psi	The cabin pressure, P (psi) on an aeroplane at cruising altitude can be modelled by the equation $P = 11.5 - 0.5 \sin(t - 2)$ where t is the time in hours since cruising altitude was first reached, and angles are in radians. Find: a) The maximum and minimum cabin pressure b) The time after reaching cruising altitude that the cabin first reaches a maximum pressure c) The cabin pressure after 5 hours at cruising altitude d) All the times within the first 8 hours of cruising that the cabin pressure would be exactly 11.3 psi a) Maximum = 12 psi ; Minimum = 11 psi b) 0.43 hours = 26 minutes c) 11.43 psi d) 2 hours 25 minutes, and 4 hours 44 minutes

Worked example	Your turn
a) Express $7 \cos \theta - 5 \sin \theta$ in the form $R \cos(\theta + \alpha)$, where $R > 0$ and $0 < \alpha < \frac{\pi}{2}$. State the exact value of R and give α to four decimal	a) Express $9 \cos \theta - 2 \sin \theta$ in the form $R \cos(\theta + \alpha)$, where $R > 0$ and $0 < \alpha < \frac{\pi}{2}$. State the exact value of R and give α to four decimal
places. b) State the maximum value of $7 \cos \theta - 5 \sin \theta$ and the value of θ , for $0 < \theta < 2\pi$ at which this maximum occurs.	places. b) State the maximum value of $9 \cos \theta - 2 \sin \theta$ and the value of θ , for $0 < \theta < 2\pi$ at which this maximum occurs.
The height <i>H</i> above ground of a passenger on a Ferris wheel is modelled by the equation $\pi t = \pi t$	The height <i>H</i> above ground of a passenger on a Ferris wheel is modelled by the equation $\pi t = \pi t$
$H = 12 - 7\cos(\frac{\pi t}{4}) + 5\sin(\frac{\pi t}{4})$	$H = 10 - 9\cos(\frac{\pi t}{5}) + 2\sin(\frac{\pi t}{5})$
where H is measured in metres, and t is the time in minutes after the wheel starts turning.	where H is measured in metres, and t is the time in minutes after the wheel starts turning.
 c) Calculate the maximum value of <i>H</i> predicted by this model, and the value of <i>t</i> when this maximum first occurs d) Determine the time for the Ferris wheel to complete five revolutions 	 c) Calculate the maximum value of <i>H</i> predicted by this model, and the value of <i>t</i> when this maximum first occurs d) Determine the time for the Ferris wheel to complete two revolutions
	a) $R = \sqrt{85}, \alpha = 0.2187$
	b) Maximum = $\sqrt{85}$ when $\theta = 6.06$
	c) Maximum $H = 19.22m$ at $t = 4.65$
	d) 20 minutes

Worked example	Your turn
a) Express 1.5 sin $\theta - 2 \cos \theta$ in the form $R \sin(\theta - \alpha)$, where $R > 0$ and $0 < \alpha < \frac{\pi}{2}$. State the exact value of R and give α to four decimal places. b) State the maximum value of 1.5 sin $\theta - 2 \cos \theta$ and the value of θ , for $0 < \theta < \pi$ at which this maximum occurs. The height H of sea water on a particular day can be modelled by the equation $H = 8 + 1.5 \sin\left(\frac{2\pi t}{25}\right) - 2\cos\left(\frac{2\pi t}{25}\right), 0 \le t < 12$ where H is measured in metres, and t is the number of hours after midnight. c) Calculate the maximum value of H predicted by this model, and the value of t when this maximum occurs d) Calculate, to the nearest minute, the times when the height of sea water is predicted, by this model, to be 7 metres.	a) Express $2 \sin \theta - 1.5 \cos \theta$ in the form $R \sin(\theta - \alpha)$, where $R > 0$ and $0 < \alpha < \frac{\pi}{2}$. State the exact value of R and give α to four decimal places. b) State the maximum value of $2 \sin \theta - 1.5 \cos \theta$ and the value of θ , for $0 < \theta < \pi$ at which this maximum occurs. The height H of sea water on a particular day can be modelled by the equation $H = 6 + 2 \sin\left(\frac{4\pi t}{25}\right) - 1.5 \cos\left(\frac{4\pi t}{25}\right), 0 \le t < 12$ where H is measured in metres, and t is the number of hours after midday. c) Calculate the maximum value of H predicted by this model, and the value of t when this maximum occurs d) Calculate, to the nearest minute, the times when the height of sea water is predicted, by this model, to be 7 metres. a) $R = 2.5, \alpha = 0.6435$ b) Maximum = 2.5 when $\theta = 2.21$ c) Maximum $H = 8.5m$ at $t = 4.41$ d) 14: 06 and 18: 43