7.4) Static rigid bodies

Worked example

Your turn

A uniform rod $A B$ of mass 20kg and length 5m rests with the end A on rough horizontal ground. The rod rests against a smooth peg C where $A C=4 \mathrm{~m}$. The rod is in limiting equilibrium at an angle of 30° to the horizontal. Find:
(a) the magnitude of the reaction of C
(b) the coefficient of friction between the rod and the ground.

A uniform $\operatorname{rod} A B$ of mass 40 kg and length 10 m rests with the end A on rough horizontal ground.
The rod rests against a smooth peg C where $A C=8 \mathrm{~m}$. The rod is in limiting equilibrium at an angle of 15° to the horizontal. Find:
(a) the magnitude of the reaction of C
(b) the coefficient of friction between the rod and the ground.
a) $240 \mathrm{~N}(2 \mathrm{sf})$
b) 0.37 (2 sf)

Your turn

A ladder $A B$, of mass m and length $5 a$, has one end A resting on rough horizontal ground. The other end B rests against a smooth vertical wall. A load of mass $3 m$ is fixed on the ladder at the point C, where $A C=2 a$.
The ladder is modelled as a uniform rod in a vertical plane perpendicular to the wall and the load is modelled as a particle.
The ladder rests in limiting equilibrium at an angle of 50° with the ground.
Find the coefficient of friction between the ladder and the ground.

A ladder $A B$, of mass m and length $3 a$, has one end A resting on rough horizontal ground.
The other end B rests against a smooth vertical wall. A load of mass $2 m$ is fixed on the ladder at the point C, where $A C=a$.
The ladder is modelled as a uniform rod in a vertical plane perpendicular to the wall and the load is modelled as a particle.
The ladder rests in limiting equilibrium at an angle of 60° with the ground.
Find the coefficient of friction between the ladder and the ground.

$$
0.23(2 \mathrm{sf})
$$

