7) Algebraic methods

7.4) Mathematical proof
7.5) Methods of proof

Your turn

Prove that if three consecutive even integers are the sides of a right-angled triangle, they must be 6, 8 and 10.

Prove that if three consecutive integers are the sides of a right-angled triangle, they must be 3,4 and 5 .

> Proof e.g. Pythagoras' Theorem with $$
x, x+1, x+2
$$

Your turn

Prove that $x^{2}+6 x+11$ is positive for all values of x.

Prove that $x^{2}+4 x+5$ is positive for all values of x.

$$
\begin{gathered}
x^{2}+4 x+5=(x+2)^{2}+1 \\
k^{2} \geq 0 \\
(x+2)^{2} \geq 0 \\
(x+2)^{2}+1 \geq 1
\end{gathered}
$$

Your turn

Prove that the sum of the squares of two consecutive even numbers is 4 more than a multiple of 8 .

Prove that the sum of the squares of two consecutive odd numbers is 2 more than a multiple of 8.

Proof

Your turn

Prove that $(1,1),(4,7)$ and $(10,4)$ are the vertices of a right-angled triangle.

Prove that $(1,1),(3,3)$ and $(4,2)$ are the vertices of a right-angled triangle.

Proof e.g. Pythagoras' Theorem or perpendicular gradients $A B$ and $B C$

The equation $k x^{2}+5 k x+3=0$, where k is a constant, has no real roots.
Prove that k satisfies the inequality $0 \leq k<$ 12 $\frac{12}{25}$

The equation $k x^{2}+3 k x+2=0$, where k is a constant, has no real roots.
Prove that k satisfies the inequality $0 \leq k<\frac{8}{9}$

Prove that $4 n-3+2 n+7$ is a multiple of 2 for all real integers n

Prove that $4 n-3+10 n-11$ is a multiple of 7 for all real integers n

$$
\begin{aligned}
& 14 n-14 \\
\equiv & 7(2 n-2) \\
\equiv & 7 k
\end{aligned}
$$

Prove that $4 n-3+2 n-9$ is a multiple of 3 for all real integers n

Prove that the sum of five consecutive integers is a multiple of 5 .

Prove that the sum of three consecutive integers is a multiple of 3 .
Let the first integer be n :

$$
\begin{aligned}
& n+n+1+n+2 \\
\equiv & 3 n+3 \\
\equiv & 3(n+1)
\end{aligned}
$$

Prove that the product of two odd numbers is an odd number.

Prove that the product of two even numbers is an even number. Let even numbers be $2 m$ and $2 n$:
$2 m \times 2 n$
$\equiv 4 m n$
$\equiv 2(2 m n)$

Your turn

Prove algebraically that $n^{2}-2-$ $(n-2)^{2}$ is always even, given n is an integer greater than 1

Prove algebraically that $(2 n+1)^{2}-(2 n+1)$ is an even number

$$
\begin{aligned}
& (2 n+1)^{2}-(2 n+1) \\
\equiv & 4 n^{2}+4 n+1-2 n-1 \\
\equiv & 4 n^{2}+2 n \\
\equiv & 2\left(2 n^{2}+n\right)
\end{aligned}
$$

Prove that $(n-1)^{2}+n^{2}+$ $(n+1)^{2}$ is two more than a multiple of 3 for all positive integer values of n

Prove that $(n+1)^{2}-n^{2}$ is one more than a multiple of 2 for all positive integer values of n

$$
\begin{aligned}
& (n+1)^{2}-n^{2} \\
\equiv & n^{2}+2 n+1-n^{2} \\
\equiv & 2 n+1
\end{aligned}
$$

Prove that $(2 n+3)^{2}-(2 n-3)^{2} \quad$ Prove that $(3 n+2)^{2}-(3 n-2)^{2}$ is a multiple of 8 for all positive integer values of n is a multiple of 8 for all positive integer values of n

$$
\begin{aligned}
& (3 n+2)^{2}-(3 n-2)^{2} \\
\equiv & 9 n^{2}+12 n+4-\left(9 n^{2}-12 n+4\right) \\
\equiv & 9 n^{2}+12 n+4-9 n^{2}+12 n-4 \\
\equiv & 24 n \\
\equiv & 8(3 n)
\end{aligned}
$$

Your turn

Prove algebraically that the difference between two different odd numbers is an even number.

Prove algebraically that the difference between two different even numbers is an even number. Let even numbers be $2 m$ and $2 n$:

$$
\begin{gathered}
2 m-2 n \\
\equiv \\
2(m-n)
\end{gathered}
$$

Prove that the product of four consecutive integers is always a multiple of 8

Prove that the product of three consecutive integers is always a multiple of 6
Proof by showing at least one is a multiple of 2 , and one will be a multiple of $3 \ldots$

Prove that, for all positive values of $n, \frac{(n+3)^{2}-(n-2)^{2}}{2 n^{2}+n}=\frac{a}{b}$ where a and b are integers or variables.

Prove that, for all positive values
of $n, \frac{(n+2)^{2}-(n+1)^{2}}{2 n^{2}+3 n}=\frac{a}{b}$ and find the integers a and b

$$
a=1, b=n
$$

Prove by exhaustion that the sum of an integer and the square of the integer is even for all integers n

Prove by exhaustion that all square numbers are either a multiple of 4 or 1 more than a multiple of 4

> Proof

Disprove the statement:
" $n^{2}-n+3$ is prime for all integers n."

Disprove the statement:
" $n^{2}-n+41$ is prime for all integers n."
$n=41, n^{2}-n+41=41^{2}=1681$
1681 has 3 factors: 1,41 and 1681

Your turn

a) Prove that for all positive values of p and q

$$
p+q>\sqrt{4 p q}
$$

b) Use a counter-example to show that this is not true when p and q are not both positive.
a) Prove that for all positive values of x and y

$$
\frac{x}{y}+\frac{y}{x} \geq 2
$$

b) Use a counter-example to show that this is not true when x and y are not both positive.
a) $\quad(x-y)^{2} \geq 0$ $x^{2}+y^{2}-2 x y \geq 0$

$$
\frac{x^{2}+y^{2}-2 x y}{x y} \geq 0
$$

[valid as $x, y>0 \therefore x y>0$]

$$
\begin{aligned}
\frac{x^{2}}{x y}+\frac{y^{2}}{x y}-\frac{2 x y}{x y} & \geq 0 \\
\frac{x}{y}+\frac{y}{x}-2 & \geq 0 \\
\frac{x}{y}+\frac{y}{x} & \geq 2
\end{aligned}
$$

b) e.g. $x=-3, y=6$

$$
-\frac{3}{6}+\frac{6}{-3}=-\frac{1}{2}-2=-\frac{5}{2}<-2
$$

