6.5) Inverse trigonometric functions

Graphs used with permission from DESMOS: <u>https://www.desmos.com/</u>

Worked example	Your turn
Work out, in radians, the values of: a) $\arcsin\left(\frac{\sqrt{2}}{2}\right)$	Work out, in radians, the values of: a) $\arcsin\left(-\frac{\sqrt{2}}{2}\right)$ b) $\arccos(-1)$ c) $\arctan(\sqrt{3})$ a) $-\frac{\pi}{4}$ b) π c) $\frac{\pi}{3}$
b) arccos(1)	
c) $\arctan(-\sqrt{3})$	

Worked example	Your turn
Given that $y = \arcsin x$, $-1 \le x \le 1$ and $0 \le y \le \pi$, a) Express $\arccos x$ in terms of y b) Hence evaluate $\arcsin x - \arccos x$	Given that $y = \arccos x$, $-1 \le x \le 1$ and $0 \le y \le \pi$, a) Express $\arcsin x$ in terms of y b) Hence evaluate $\arccos x + \arcsin x$ a) $\arcsin x = \frac{\pi}{2} - y$ b) $\frac{\pi}{2}$

Worked example	Your turn
Prove that for $0 \le x \le 1$, $\arcsin x = \arccos \sqrt{1 - x^2}$ and give a reason why this result is not true for $-1 \le x \le 0$	Prove that for $0 \le x \le 1$, $\arccos x = \arcsin \sqrt{1 - x^2}$ and give a reason why this result is not true for $-1 \le x \le 0$
	Proof Then reason e.g. counter example $x = -\frac{1}{\sqrt{2}}$