6.4) Use tangent and chord properties

Worked example	Your turn
Find the equation of the tangent to $x^2 + y^2 = 25$ at the point (3, 4)	Find the equation of the tangent to $x^2 + y^2 = 25$ at the point (4, 3) $y = -\frac{4}{3}x + \frac{25}{3}$

Worked example	Your turn
Find the equation of the tangent to $x^2 + y^2 = 169$ at the point (5, 12)	Find the equation of the tangent to $x^2 + y^2 = 169$ at the point (-5, 12) $y = \frac{5}{12}x + \frac{169}{12}$

Worked example	Your turn
 The circle <i>C</i> has equation (x - 3)² + (y - 7)² = 100 a) Verify the point <i>P</i>(11,1) lies on <i>C</i>. b) Find an equation of the tangent to <i>C</i> at the point <i>P</i>, giving your answer in the form ax + by + c = 0 	The circle <i>C</i> has equation $(x - 2)^2 + (y - 6)^2 = 100$ a) Verify the point <i>P</i> (10,0) lies on <i>C</i> . b) Find an equation of the tangent to <i>C</i> at the point <i>P</i> , giving your answer in the form $ax + by + c = 0$ a) Verified using substitution b) $4x - 3y = 40 = 0$

Worked example	Your turn
A circle <i>C</i> has equation $(x - 4)^2 + (y + 4)^2 = 10$ The line <i>l</i> is a tangent to the circle and has gradient -3. Find two possible equations for <i>l</i> , giving your answers in the form $y = mx + c$.	A circle <i>C</i> has equation $(x-5)^2 + (y+3)^2 = 10$ The line <i>l</i> is a tangent to the circle and has gradient -3. Find two possible equations for <i>l</i> , giving your answers in the form $y = mx + c$. y = -3x + 2 and $y = -3x + 22$

Worked example	Your turn
The line with equation $4x + y - 5 = 0$ is a tangent to the circle with equation $(x - 3)^2 + (y - p)^2 = 2$. Find the two possible values of p	The line with equation $4x + y - 3 = 0$ is a tangent to the circle with equation $(x - 2)^2 + (y - p)^2 = 5$. Find the two possible values of p $p = 3 \pm \sqrt{19}$

Worked example	Your turn
A circle has centre $C(5,3)$, and passes through the point $P(2,6)$. Find the equation of the tangent of the circle at the point P , giving your equation in the form $ax + by + c = 0$ where a, b, c are integers	A circle has centre $C(3,5)$, and passes through the point $P(6,9)$. Find the equation of the tangent of the circle at the point P , giving your equation in the form $ax + by + c = 0$ where a, b, c are integers 3x + 4y - 54 = 0

Worked example	Your turn
A circle passes through the points $A(0,0)$ and $B(2,8)$. The centre of the circle has x value -2 . Determine the equation of the circle.	A circle passes through the points $A(0,0)$ and $B(4,2)$. The centre of the circle has x value -1 . Determine the equation of the circle.
	$(x+1)^2 + (y-7)^2 = 50$