6.4) Use tangent and chord properties

Your turn

Find the equation of the tangent to $x^{2}+y^{2}=25$ at the point $(3,4)$

Find the equation of the tangent to $x^{2}+y^{2}=25$ at the point $(4,3)$

$$
y=-\frac{4}{3} x+\frac{25}{3}
$$

Your turn

Find the equation of the tangent to $x^{2}+y^{2}=169$ at the point $(5,12)$

Find the equation of the tangent to $x^{2}+y^{2}=169$ at the point $(-5,12)$

$$
y=\frac{5}{12} x+\frac{169}{12}
$$

The circle C has equation

$$
(x-3)^{2}+(y-7)^{2}=100
$$

a) Verify the point $P(11,1)$ lies on C.
b) Find an equation of the tangent to C at the point P, giving your answer in the form $a x+b y+c=0$

The circle C has equation

$$
(x-2)^{2}+(y-6)^{2}=100
$$

a) Verify the point $P(10,0)$ lies on C.
b) Find an equation of the tangent to C at the point P, giving your answer in the form $a x+b y+c=0$
a) Verified using substitution
b) $4 x-3 y=40=0$

Worked example

Your turn

A circle C has equation

$$
(x-4)^{2}+(y+4)^{2}=10
$$

The line l is a tangent to the circle and has gradient -3 . Find two possible equations for l, giving your answers in the form $y=m x+$ c.

A circle C has equation

$$
(x-5)^{2}+(y+3)^{2}=10
$$

The line l is a tangent to the circle and has gradient -3 . Find two possible equations for l, giving your answers in the form $y=m x+$ c.

$$
y=-3 x+2 \text { and } y=-3 x+22
$$

Your turn

The point P has coordinates $(-8,-2)$ and the point Q has coordinates $(2,-6)$.
M is the midpoint of the line segment $P Q$
a) Find an equation for l.
b) Given that the y-coordinate of C is -9: i) show that the x-coordinate of C is -5 . ii) find an equation of the circle.

The point P has coordinates $(-7,-1)$ and the point Q has coordinates $(3,-5)$.
M is the midpoint of the line segment $P Q$
a) Find an equation for l.
b) Given that the y-coordinate of C is -8 :
i) show that the x-coordinate of C is -4 .
ii) find an equation of the circle.
a) $y=\frac{5}{2} x+2$
b) i) Shown
ii) $(x+4)^{2}+(y+8)^{2}=58$

The line with equation $4 x+y-5=0$ is a tangent to the circle with equation $(x-3)^{2}+(y-p)^{2}=2$
Find the two possible values of p

The line with equation $4 x+y-3=0$ is a tangent to the circle with equation
$(x-2)^{2}+(y-p)^{2}=5$.
Find the two possible values of p

$$
p=3 \pm \sqrt{19}
$$

Your turn

A circle has centre $C(5,3)$, and passes through the point $P(2,6)$.
Find the equation of the tangent of the circle at the point P, giving your equation in the form $a x+b y+c=0$ where a, b, c are integers..

A circle has centre $C(3,5)$, and passes through the point $P(6,9)$.
Find the equation of the tangent of the circle at the point P, giving your equation in the form $a x+b y+c=0$ where a, b, c are integers..

$$
3 x+4 y-54=0
$$

A circle passes through the points $A(0,0)$ and $B(2,8)$.
The centre of the circle has x value -2 . Determine the equation of the circle.

A circle passes through the points $A(0,0)$ and $B(4,2)$.
The centre of the circle has x value -1 .
Determine the equation of the circle.

$$
(x+1)^{2}+(y-7)^{2}=50
$$

