6.3) Intersections of straight lines and circles

Your turn

Find the coordinates of the points where the line $y=x+4$ meets the circle $x^{2}+(y-3)^{2}=61$

Find the coordinates of the points where the line
$y=x+5$ meets the circle $x^{2}+(y-2)^{2}=29$

Your turn

Show that the line $y=x+4$ does not meet the circle $(x-3)^{2}+y^{2}=22$

Show that the line $y=x-7$ does not meet the circle $(x+2)^{2}+y^{2}=33$

Shown using discriminant.

Worked example

Your turn

The line with equation $y=k x$ intersects the circle with equation $x^{2}-8 x+y^{2}+12 y+32=0$ at two distinct points.
Find the range of possible values of k to 2 dp

The line with equation $y=k x$ intersects the circle with equation $x^{2}-4 x+y^{2}+10 y+23=0$ at two distinct points.
Find the range of possible values of k to 2 dp

$$
k=-0.87, k=10.87(2 \mathrm{dp})
$$

Your turn

Using an algebraic method, determine k such that the line $y=x+k$ touches the circle with equation $x^{2}+y^{2}=9$

Using an algebraic method, determine k such that the line $y=x+k$ touches the circle with equation $x^{2}+y^{2}=1$

$$
k= \pm \sqrt{2}
$$

Your turn

The line with equation $y=5 x+2$ meets the circle with equation $x^{2}+k x+y^{2}=6$ at exactly one point. Find the two possible values of k

The line with equation $y=4 x+3$ meets the circle with equation $x^{2}+k x+y^{2}=7$ at exactly one point. Find the two possible values of k

$$
k=-24 \pm 4 \sqrt{6}
$$

Your turn

The line with equation $y=4 x-3$ does not intersect the circle with equation $x^{2}+2 x+y^{2}=$ k.

Find the range of possible values of k.

The line with equation $y=3 x-2$ does not intersect the circle with equation $x^{2}+4 x+y^{2}=$ k.
Find the range of possible values of k.

$$
k<\frac{12}{5}
$$

