6.4) Projectile motion formulae

Worked example	Your turn
A particle is projected from a point with speed U at an angle of elevation α and moves freely under gravity. When the particle has moved a horizontal distance x , its height above the point of projection is y .	A particle is projected from a point with speed U at an angle of elevation α and moves freely under gravity. When the particle has moved a horizontal distance x , its height above the point of projection is y .
(a) Show that $y = x \tan \alpha - \frac{gx^2}{2u^2}(1 + \tan^2 \alpha)$	(a) Show that $y = x \tan \alpha - \frac{gx^2}{2u^2}(1 + \tan^2 \alpha)$
A particle is projected from a point O on a horizontal plane, with speed $14 m s^{-1}$ at an angle of elevation α . The particle passes through a point B , which is at a horizontal distance of 16m from O and at a height of 4m above the plane. (b) Find the two possible values of α , giving your answers to the nearest degree.	A particle is projected from a point 0 on a horizontal plane, with speed $28 m s^{-1}$ at an angle of elevation α . The particle passes through a point B , which is at a horizontal distance of $32m$ from 0 and at a height of $8m$ above the plane. (b) Find the two possible values of α , giving your answers to the nearest degree. a) Shown b) $\alpha = 27^{\circ}$, 77° (nearest degree)