6.4) Projectile motion formulae

Worked example

Your turn

A particle is projected from a point with speed U at an angle of elevation α and moves freely under gravity. When the particle has moved a horizontal distance x, its height above the point of projection is y.
(a) Show that $y=x \tan \alpha-\frac{g x^{2}}{2 u^{2}}\left(1+\tan ^{2} \alpha\right)$

A particle is projected from a point O on a horizontal plane, with speed $14 \mathrm{~ms}^{-1}$ at an angle of elevation α. The particle passes through a point B, which is at a horizontal distance of 16 m from O and at a height of 4 m above the plane.
(b) Find the two possible values of α, giving your answers to the nearest degree.

A particle is projected from a point with speed U at an angle of elevation α and moves freely under gravity. When the particle has moved a horizontal distance x, its height above the point of projection is y.
(a) Show that $y=x \tan \alpha-\frac{g x^{2}}{2 u^{2}}\left(1+\tan ^{2} \alpha\right)$

A particle is projected from a point O on a horizontal plane, with speed $28 \mathrm{~ms}^{-1}$ at an angle of elevation α. The particle passes through a point B, which is at a horizontal distance of 32 m from O and at a height of 8 m above the plane.
(b) Find the two possible values of α, giving your answers to the nearest degree.
a) Shown
b) $\quad \alpha=27^{\circ}, 77^{\circ}$ (nearest degree)

