6.2) Graphs of $\sec x, \operatorname{cosec} x$ and $\cot x$

Your turn

Sketch the graph in the interval $-2 \pi \leq x \leq 2 \pi$:

$$
y=\operatorname{cosec} x
$$

Sketch the graph in the interval $-2 \pi \leq x \leq 2 \pi$:
$y=\sec x$

$$
y=\cot x
$$

Your turn

Sketch the graph in the interval $-2 \pi \leq x \leq 2 \pi$:

$$
y=\operatorname{cosec}\left(x+\frac{\pi}{4}\right)
$$

$$
y=\cot \left(x-\frac{\pi}{3}\right)
$$

Your turn

Sketch the graph in the interval $-2 \pi \leq x \leq 2 \pi$:

Sketch the graph in the interval $-2 \pi \leq x \leq 2 \pi$:
$y=4 \sec x$

$$
y=3 \cot x
$$

Your turn

Sketch the graph in the interval $0 \leq x \leq 2 \pi$:

$$
y=6+\operatorname{cosec} 4 x
$$

$$
y=\cot 3 x-5
$$

Sketch the graph in the interval $0 \leq x \leq 2 \pi$:

$$
y=1+\sec 2 x
$$

Your turn

State the range of:

$y=\operatorname{cosec} x, x \in \mathbb{R}, x \neq n \pi, n \in \mathbb{Z}$

$$
y=\cot x, x \in \mathbb{R}, x \neq n \pi, n \in \mathbb{Z}
$$

State the range of:

$$
\begin{gathered}
y=\sec x, x \in \mathbb{R}, x \neq \frac{(2 n+1) \pi}{2}, n \in \mathbb{Z} \\
\sec x \leq-1 \text { or } \sec x \geq 1
\end{gathered}
$$

Find the range of values of k for which $2+7 \sec x=k$ has no solutions.

Find the range of values of k for which $3+5 \sec x=k$ has no solutions.

$$
-2<k<8
$$

Find the range of values of k for which $3 \operatorname{cosec} x-5=k$ has no solutions

Worked example

Your turn

Find the maximum and minimum of the graph, stating the smallest positive values of θ at which they occur:

$$
y=\frac{1}{2+3 \sec \theta}
$$

Find the maximum and minimum of the graph, stating the smallest positive values of θ at which they occur:

$$
\begin{gathered}
y=\frac{1}{1+2 \operatorname{cosec} \theta} \\
\text { Maximum } \frac{1}{3} \text { at } \theta=\frac{\pi}{2} \\
\text { Minimum }-1 \text { at } \theta=\frac{3 \pi}{2}
\end{gathered}
$$

