6.2) Horizontal and vertical components

Your turn

A particle is projected from a point on a horizontal plane with an initial velocity of $39 \mathrm{~ms}^{-1}$ at an angle α above the horizontal, where $\tan \alpha=\frac{5}{12}$.
a) Find the horizontal and vertical components of the initial velocity
b) Express the initial velocity as a vector in terms of \boldsymbol{i} and \boldsymbol{j}

A particle is projected from a point on a horizontal plane with an initial velocity of $40 \mathrm{~ms}^{-1}$ at an angle α above the horizontal, where $\tan \alpha=\frac{3}{4}$.
a) Find the horizontal and vertical components of the initial velocity
b) Express the initial velocity as a vector in terms of \boldsymbol{i} and \boldsymbol{j}
a) $u_{x}=32 \mathrm{~ms}^{-1} ; u_{y}=24 \mathrm{~ms}^{-1}$
b) $(32 \boldsymbol{i}+24 \boldsymbol{j}) \mathrm{ms}^{-1}$

Your turn

A particle is projected with velocity $\boldsymbol{U}=(2 \boldsymbol{i}+7 \boldsymbol{j}) \mathrm{ms}^{-1}$ where \boldsymbol{i} and \boldsymbol{j} are the unit vectors in the horizontal and vertical directions respectively.
Find the initial speed of the particle and its angle of projection.

A particle is projected with velocity $\boldsymbol{U}=(3 \boldsymbol{i}+5 \boldsymbol{j}) m s^{-1}$ where \boldsymbol{i} and \boldsymbol{j} are the unit vectors in the horizontal and vertical directions respectively.
Find the initial speed of the particle and its angle of projection.
$5.8 \mathrm{~ms}^{-1}(2 \mathrm{sf})$ at an angle of $59^{\circ}(2 \mathrm{sf})$ above the horizontal

A particle is projected with velocity $\boldsymbol{U}=(3 k \boldsymbol{i}+$
a) 66.8° above the horizontal
b) $k= \pm 4$

