6.2) The binomial distribution

Your turn
The probability of a bolt being faulty is 0.21. A random sample of 43 bolts is taken from the production line. a) Define a suitable distribution to model the number of faulty bolts in this sample. b) Find the probability that the sample contains fewer than 2 faulty bolts. a) Let $X =$ number of faulty bolts. $X \sim B(43, 0.21)$ b) 0.000493 (3 sf)
ra p a b a

Worked example	Your turn
a) $P(X = 2)$ b) $P(X = 5)$ c) $P(X \le 1)$ d) $P(X \ge 7)$ a) b) c) d) c) d) c) d) c)	he random variable $X \sim B\left(12, \frac{1}{6}\right)$. Find:) $P(X = 2)$) $P(X = 9)$) $P(X \le 1)$) $P(X \ge 11)$) $0.2961 (4 \text{ dp})$) $0.0000126 (3 \text{ sf})$) $0.3813 (4 \text{ dp})$) $0.000000280 (3 \text{ sf})$

Worked example	Your turn
A company claims that a third of the lightbulbs sent to them are faulty. To test this claim the number of faulty lightbulbs in a random sample of 100 is recorded. Give two reasons why a binomial distribution may be a suitable model for the number of faulty lightbulbs in the sample.	A company claims that a quarter of the bolts sent to them are faulty. To test this claim the number of faulty bolts in a random sample of 50 is recorded. Give two reasons why a binomial distribution may be a suitable model for the number of faulty bolts in the sample.
	 Two possible outcomes (bolt faulty or not faulty) Constant probability of bolt being faulty (p = 1/4) A bolt being faulty is independent of other bolts being faulty (assuming they do not influence each other) 50 bolts in the sample (fixed number of trials)