6.2) The binomial distribution

Worked example

Your turn

The probability of a lightbulb being faulty is 0.12 . A random sample of 34 lightbulbs is taken from the production line.
a) Define a suitable distribution to model the number of faulty lightbulbs in this sample.
b) Find the probability that the sample contains fewer than 3 faulty lightbulbs.

The probability of a bolt being faulty is 0.21 . A random sample of 43 bolts is taken from the production line.
a) Define a suitable distribution to model the number of faulty bolts in this sample.
b) Find the probability that the sample contains fewer than 2 faulty bolts.
a) Let $X=$ number of faulty bolts.

$$
X \sim B(43,0.21)
$$

b) $0.000493(3 \mathrm{sf})$

The random variable $X \sim B\left(8, \frac{1}{10}\right)$. Find:
a) $P(X=2)$
b) $\quad P(X=5)$
c) $\quad P(X \leq 1)$
d) $P(X \geq 7)$

The random variable $X \sim B\left(12, \frac{1}{6}\right)$. Find:
a) $P(X=2)$
b) $P(X=9)$
c) $P(X \leq 1)$
d) $\quad P(X \geq 11)$
a) $0.2961(4 \mathrm{dp})$
b) $0.0000126(3 \mathrm{sf})$
c) $0.3813(4 \mathrm{dp})$
d) $0.0000000280(3 \mathrm{sf})$

Worked example

Your turn

A company claims that a third of the lightbulbs sent to them are faulty.
To test this claim the number of faulty lightbulbs in a random sample of 100 is recorded.
Give two reasons why a binomial distribution may be a suitable model for the number of faulty lightbulbs in the sample.

A company claims that a quarter of the bolts sent to them are faulty.
To test this claim the number of faulty bolts in a random sample of 50 is recorded.
Give two reasons why a binomial distribution may be a suitable model for the number of faulty bolts in the sample.

- Two possible outcomes (bolt faulty or not faulty)
- Constant probability of bolt being faulty ($p=\frac{1}{4}$)
- A bolt being faulty is independent of other bolts being faulty (assuming they do not influence each other)
- 50 bolts in the sample (fixed number of trials)

