CP2 Chapter 6

Hyperbolic Functions

Course Structure

1. Definition of hyperbolic functions and their sketches.
2. Inverse hyperbolic functions.
3. Hyperbolic Identities and Solving Equations
4. Differentiation
5. Integration

$\mathbf{8}$	8.1	Understand the definitions of hyperbolic functions functions	For example, $\cosh x=\frac{1}{2}\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)$		
sinh $x, \cosh x$ and					
tanh x, including					
their domains and					
ranges, and be able					
to sketch their					
graphs.				\quad	g.2
:---					

8
Hyperbolic functions
continued

8.3	Understand and be able to use the definitions of the inverse hyperbolic functions and their domains and ranges.	$\operatorname{arcosh} x=\ln \left[x+\sqrt{x^{2}-1}\right], x \geqslant 1$
8.4	Derive and use the logarithmic forms of the inverse hyperbolic functions.	
8.5	Integrate functions of the form $\left(x^{2}+a^{2}\right)^{-\frac{1}{2}}$ and $\left(x^{2}-a^{2}\right)^{-\frac{1}{2}}$ and be able to choose substitutions to	
integrate associated functions.		

Conic Sections

In mathematics there are a number of different families of curves. Each of these have different properties and their equations have different forms.

It is possible to obtain these different types of curves by slicing a cone, hence "conic sections".

The axis of the parabola is parallel to the side of the cone.

For interest:

Comparing circles and hyperbolas

(Don't make notes on this slide) You will cover Hyperbolas in FP1, but this will give some context for the eponymously named 'hyperbolic functions' that we will explore in this chapter.

Circles

The 'simplest' circle is a unit circle centred at the origin.
Cartesian equation:

$$
x^{2}+y^{2}=1
$$

Parametric eqns (in terms of θ):

$$
\begin{aligned}
& x=\cos \theta \\
& y=\sin \theta
\end{aligned}
$$

Hyperbolas

The equivalent hyperbola (which crosses x-axis at $(1,0)$ and ($-1,0$)) Cartesian equation:

$$
x^{2}-y^{2}=1
$$

Parametric equations:

$$
\begin{aligned}
& x=\cosh \theta \\
& y=\sinh \theta
\end{aligned}
$$

What's the point of hyperbolic functions?

Hyperbolic functions often result from differential equations (e.g. in mechanics), and we'll see later in this module how we can use these functions in calculus.

For example, we can consider forces acting on each point on a hanging piece of string.
Solving the relevant differential equations, we end up with coshx.

Equations for Hyperbolic Functions

Hyperbolic sine:

$$
\sinh x=\frac{e^{x}-e^{-x}}{2} \quad x \in \mathbb{R}
$$

Hyperbolic cosine:

$$
\cosh x=\frac{e^{x}+e^{-x}}{2} \quad x \in \mathbb{R}
$$

Hyperbolic tangent:

$$
\tanh x=\frac{\sinh x}{\cosh x}=\frac{e^{2 x}-1}{e^{2 x}+1} \quad x \in \mathbb{R}
$$

Hyperbolic secant:

$$
\operatorname{sech} x=\frac{1}{\cosh x}=\frac{2}{e^{x}+e^{-x}} \quad x \in \mathbb{R}
$$

Hyperbolic cosecant:

$$
\operatorname{cosech} x=\frac{1}{\sinh x}=\frac{2}{e^{x}-e^{-x}} \quad x \in \mathbb{R}, x \neq 0
$$

Hyperbolic cotangent:

$$
\operatorname{coth} x=\frac{1}{\tanh x}=\frac{e^{2 x}+1}{e^{2 x}-1} \quad x \in \mathbb{R}, x \neq 0
$$

Examples:

1. Calculate (using both your sinh button and using the formula)
$\sinh 3=10.02$
2. Write in terms of $e: \operatorname{cosech} 3$
3. Find the exact value of: $\tanh (\ln 4)$
4. Solve $\sinh x=5$

- $y=\sinh x$ is the average of e^{x} and $-e^{-x}$:
- $y=\cosh x$ is the average of e^{x} and e^{-x} :

- $\tanh x=\frac{\sinh x}{\cosh x}$

Test Your Understanding

Sketch the graph of $y=\operatorname{sech} x$

[FP3 June 2011 Q5] The curve C_{1} has equation $y=3 \sinh 2 x$, and the curve C_{2} has equation $y=13-3 \mathrm{e}^{2 x}$.
(a) Sketch the graph of the curves C_{1} and C_{2} on one set of axes, giving the equation of any asymptote and the coordinates of points where the curves cross the axes.

