6.1) Probability distributions

Your turn

Let $X=$ number of tails when a fair coin is tossed 4 times. Write a list of all the possible outcomes.

Let $X=$ number of tails when a fair coin is tossed 3 times.
Write a list of all the possible outcomes.

$$
\begin{aligned}
& H H H \\
& T H H \\
& H T H \\
& H H T \\
& T T H \\
& T H T \\
& H T T \\
& T T T
\end{aligned}
$$

Your turn

Let $X=$ number of tails when a fair coin is tossed 4 times.
Describe the probability distribution of X :

- Using a table

Let $X=$ number of tails when a fair coin is tossed 3 times.
Describe the probability distribution of X :

- Using a table

\boldsymbol{x}	0	1	2	3
$\boldsymbol{P}(\boldsymbol{X}=\boldsymbol{x})$	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$

Your turn

Let $X=$ number of tails when a fair coin is tossed 4 times.
Describe the probability distribution of X :

- Using a diagram

Let $X=$ number of tails when a fair coin is tossed 3 times.
Describe the probability distribution of X :

- Using a diagram

Your turn

Let $X=$ number of tails when a fair coin is tossed 4 times.
Describe the probability distribution of X :

- As a probability mass function

Let $X=$ number of tails when a fair coin is tossed 3 times.
Describe the probability distribution of X :

- As a probability mass function

$$
P(X=x)=\left\{\begin{array}{rr}
\frac{1}{8} & x=0,3 \\
\frac{3}{8} & x=1,2 \\
0 & \text { otherwise }
\end{array}\right.
$$

Your turn

A biased six-sided dice with faces numbered $1,2,3,4,5$ and 6 is rolled. The number on the bottom-most face is modelled as a random variable X.
Given that $P(X=x)=\frac{k}{x}$,
a) Find the value of k
b) Give the probability distribution of X in table form
c) Find the probability that:
i) $X \geq 2$
ii) $1 \leq X<4$
iii) $X<1$
iv) $2 X+1>11$

A biased four-sided dice with faces numbered 1,2,3 and 4 is rolled.. The number on the bottom-most face is modelled as a random variable X.
Given that $P(X=x)=\frac{k}{x}$,
a) Find the value of k
b) Give the probability distribution of X in table form
c) Find the probability that:
i) $X>2$
ii) $1 \leq X<4$
iii) $X \leq 4$
iv) $3 X-5<0$
a) $k=\frac{12}{25}$
b)

\boldsymbol{x}	1	2	3	4
$\boldsymbol{P}(\boldsymbol{X}=\boldsymbol{x})$	$\frac{12}{25}$	$\frac{6}{25}$	$\frac{4}{25}$	$\frac{3}{25}$

c)
i) $\frac{7}{25}$
ii) $\frac{22}{25}$
iii) 1
iv) $\frac{12}{25}$

Your turn

The random variable X has a probability function

$$
P(X=x)=\frac{k}{x^{3}}, \quad x=1,2,3,4
$$

Find the value of k

The random variable X has a probability function

$$
P(X=x)=\frac{k}{x^{2}}, \quad x=1,2,3,5
$$

Find the value of k

$$
k=\frac{900}{1261}
$$

Your turn

The random variable X has a probability function

$$
P(X=x)= \begin{cases}k x & x=1,3 \\ k(x-2) & x=2,4\end{cases}
$$

a) Find the value of k
b) Find $P(X>1)$

The random variable X has a probability function

$$
P(X=x)= \begin{cases}k x & x=1,2 \\ k(x-3) & x=3,4\end{cases}
$$

a) Find the value of k
b) Find $P(X<4)$
a) $k=\frac{1}{4}$
b) $\frac{3}{4}$

The random variable X has a probability function

$$
P(X=x)=\left\{\begin{array}{rr}
k(2-x)^{2} & x=-2,-1,0,1,2,3 \\
0 & \text { otherwise }
\end{array}\right.
$$

Find the value of k

The random variable X has a probability function

$$
P(X=x)=\left\{\begin{array}{lr}
k(1-x)^{2} & x=-1,0,1,2 \\
0 & \text { otherwise }
\end{array}\right.
$$

Find the value of k

$$
k=\frac{1}{6}
$$

Worked example

Your turn

A spinner has six equally-sized sections. Four contain the letter G. 2 contain the letter Y. The spinner is spun until it lands on Y or has been spun five times in total.
Find the probability distribution of the random variable S, the number of times the spinner is spun.

A spinner has five equally-sized sections.
Three contain the letter B. 2 contain the letter R.
The spinner is spun until it lands on R or has been spun four times in total.
Find the probability distribution of the random
variable S, the number of times the spinner is spun.

\mathbf{S}	1	2	3	4
$\boldsymbol{P}(\mathbf{S}=\mathbf{s})$	$\frac{2}{5}$	$\frac{6}{25}$	$\frac{18}{125}$	$\frac{27}{125}$

Your turn

The random variable X can taken any integer value from 1 to 30 . Given that X has a discrete uniform distribution, find:
a) $P(X=5)$
b) $P(X \geq 20)$
c) $P(12<x<21)$

The random variable X can taken any integer value from 1 to 40 . Given that X has a discrete uniform distribution, find:
a) $P(X=3)$
b) $P(X \geq 21)$
c) $P(13<X<31)$
a) $\frac{1}{40}$
b) $\frac{1}{2}$
c) $\frac{17}{40}$

A discrete random variable has a probability distribution as shown in the table. Find the value of a

\boldsymbol{x}	0	1	2	3
$\boldsymbol{P}(\boldsymbol{X}=\boldsymbol{x})$	a	$a-\frac{1}{4}$	$a+\frac{1}{3}$	$3 a$

A discrete random variable has a probability distribution as shown in the table. Find the value of a

\boldsymbol{x}	1	2	3	4
$\boldsymbol{P}(\boldsymbol{X}=\boldsymbol{x})$	$2 a$	$a-\frac{1}{3}$	$a+\frac{1}{4}$	$5 a$

$$
a=\frac{13}{108}
$$

