<u>6A Introduction to Hyperbolic Functions</u>

sinhx

cosechx

coshx

sechx

tanhx

cothx

1. Find, to 2 decimal places, the value of:

a) sinh 3

b) cosh 1

c) tanh 0.8

2. Find the exact value of:

tanh(*ln*4)

3. Find the value of x for which $\sinh x = 5$. Give your answer to 2 decimal places.

- 4. Sketch hyperbolic function
- a) $y = \sinh x$

b) $y = \cosh x$

c) y = tanh x

6B Inverse Hyperbolic Functions

- 1. Sketch hyperbolic function
- a) y = arsinh x

b) $y = \operatorname{arcosh} x$

c) y = artanh x

2. Show that $\operatorname{arsinh} x = \ln(x + \sqrt{x^2 + 1})$

3. Show that $\operatorname{arcosh} x = \ln(x + \sqrt{x^2 - 1})$

4. Find an expression for *artanh* x using logarithms

- 5. Express using natural logarithms:
- a) arsinh 1

b) arcosh 2

c) artanh $\frac{1}{3}$

6C Hyperbolic Equations and Identities

- 1. Prove that:
- a)

 $cosh^2A - sinh^2A \equiv 1$

b)

 $\sinh(A+B) \equiv \sinh A \cosh B + \cosh A \sinh B$

 $\cosh 2A \equiv 1 + 2sinh^2A$

Osborn's Rule:

2. Write down the hyperbolic identity corresponding to:

a)

$$cos2A \equiv 2cos^2A - 1$$

b)

 $\tan(A - B) \equiv \frac{\tan A - \tan B}{1 + \tan A \tan B}$

- 3. Given that $\sinh x = \frac{3}{4}$, find the exact value of: a) $\cosh x$

b) tanh x

c) $\sinh 2x$

4. Solve the equation below for real values of *x*.

 $6\sinh x - 2\cosh x = 7$

5. Solve the equation below, giving answers as natural logarithms.

 $2\cosh^2 x - 5\sinh x = 5$

6. Solve the equation below, giving answers as natural logarithms where appropriate.

 $\cosh 2x - 5\cosh x + 4 = 0$

Some additions to Osborn's rule

6D Differentiating Hyperbolics

1. Show that $\frac{d}{dx}(\sinh x) = \cosh x$

2. Show that $\frac{d}{dx}(\cosh x) = \sinh x$

3. Show that $\frac{d}{dx}(\tanh x) = \operatorname{sech}^2 x$

4. Differentiate $\cosh 3x$ with respect to x

5. Differentiate $x^2 \cosh 4x$ with respect to x

6. Given that:

 $y = A\cosh 3x + B\sinh 3x$

Where *A* and *B* are constants, prove that $\frac{d^2y}{dx^2} = 9y$

7. Show that $\frac{d}{dx}(\operatorname{arcosh} x) = \frac{1}{\sqrt{x^2 - 1}}, x > 1$

8. Given $y = x \operatorname{arcosh} x$, find $\frac{dy}{dx}$

9. Given $y = (arcosh x)^2$, prove that:

$$(x^2 - 1)\left(\frac{dy}{dx}\right)^2 = 4y$$

10.

a) Show that
$$\frac{d}{dx}(arsinh x) = \frac{1}{\sqrt{1+x^2}}$$

b) Find the first two non-zero terms in the series expansion of *arsinh* x

c) The general term for the series expansion of *arsinh x* is given by:

arsinh
$$x = \sum_{r=0}^{\infty} \left(\frac{(-1)^n (2n)!}{2^{2n} (n!)^2} \right) \frac{x^{2n+1}}{2n+1}$$

Find, in its simplest terms, the third term in the sequence

d) Use your approximation, up to and including the term in x^5 , to find an approximation for arsinh 0.5

e) Calculate the percentage error by using this approximation

6E Integrating Hyperbolics

1. Find

a)

 $\int \cosh(4x-1) \ dx$

b)

 $\int \left(\frac{2+5x}{\sqrt{x^2+1}}\right) \, dx$

c)

 $\int \cosh^5 2x \sinh 2x \, dx$

 $\int tanhx\,dx$

e)

 $\int \cosh^2 3x \, dx$

 $\int \sinh^3 x \, dx$

 $\int e^{2x} \sinh x \, dx$

2. By using an appropriate substitution, find:

$$\int \frac{1}{\sqrt{x^2 - a^2}} \, dx \, , \, x > a$$

Formula book reference:

Hyperbolic functions		Differentiation
$\cosh^2 x - \sinh^2 x = 1$		f (<i>x</i>)
$\sinh 2x = 2 \sinh x \cosh x$		arcsin x
$\cosh 2x = \cosh^2 x + \sinh^2 x$		
$\operatorname{arcosh} x = \ln\{x + \sqrt{x^2 - 1}\} \qquad (x \ge 1)$		arccos x
$\operatorname{arsinh} x = \ln\{x + \sqrt{x^2 + 1}\}$		arctan x
$\operatorname{artanh} x = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$ (x < 1)		sinh x
		$\cosh x$
Integration (+ constant; $a > 0$ where relevant)		tanh x
f (<i>x</i>)	$\int \mathbf{f}(x) \mathrm{d}x$	arsinh <i>x</i>
sinh x	$\cosh x$	arcosh x
$\cosh x$	sinh x	
tanh x	$\ln \cosh x$	artanh x
$\frac{1}{\sqrt{a^2 - x^2}}$	$\arcsin\left(\frac{x}{a}\right) (x < a)$	
$\frac{1}{a^2 + x^2}$	$\frac{1}{a} \arctan\left(\frac{x}{a}\right)$	
$\frac{1}{\sqrt{x^2 - a^2}}$	$\operatorname{arcosh}\left(\frac{x}{a}\right), \ln\{x + \sqrt{x^2 - a^2}\} (x > a)$	a)
$\frac{1}{\sqrt{a^2 + x^2}}$	$\operatorname{arsinh}\left(\frac{x}{a}\right), \ln\{x + \sqrt{x^2 + a^2}\}$	

f'(x)

 $\frac{1}{\sqrt{1-x^2}} - \frac{1}{\sqrt{1-x^2}}$

 $\frac{1}{1+x^2}$

 $\cosh x$ $\sinh x$ $\mathrm{sech}^2 x$

 $\frac{1}{\sqrt{1+x^2}} \\ \frac{1}{\sqrt{x^2-1}}$

 $\frac{1}{1-x^2}$

$$\frac{1}{a^2 - x^2} \qquad \qquad \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right| = \frac{1}{a} \operatorname{artanh} \left(\frac{x}{a} \right) \quad (|x| < a)$$
$$\frac{1}{x^2 - a^2} \qquad \qquad \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right|$$

3. Show that

a)

$$\int_{5}^{8} \frac{1}{\sqrt{x^2 - 16}} \, dx = \ln\left(\frac{2 + \sqrt{3}}{2}\right)$$

b)

$$\int \sqrt{1+x^2} \, dx = \frac{1}{2} \operatorname{arsinhx} + \frac{1}{2} x \sqrt{1+x^2} + c$$

4. By using a hyperbolic substitution, evaluate:

$$\int_0^6 \frac{x^3}{\sqrt{x^2 + 9}} \, dx$$

$$\int \frac{1}{\sqrt{12x+2x^2}} \, dx$$

6. Use the substitution

$$x = \frac{1}{2}(3 + 4\cosh u)$$

to find:

$$\int \frac{1}{\sqrt{4x^2 - 12x - 7}} \, dx$$