6A Horizontal Projections

1. A ball is thrown horizontally, with speed $20 \mathrm{~ms}^{-1}$, from the top of a building of height 30 m . Find:
a) The time the ball takes to reach the ground
b) The horizontal distance travelled in that time
2. A particle is projected horizontally with a velocity of $15 \mathrm{~ms}^{-1}$. Find:
a) The horizontal and vertical components of the displacement of the particle from the point of projection after 3 seconds
b) Find the distance of the particle from its starting point after 3 seconds
3. A particle is projected horizontally with a speed of $U \mathrm{~ms}^{-1}$ from a point 122.5 m above a horizontal plane. The particle hits the plane at a point which is at a horizontal distance of 90 m away from the starting point.

Find the initial speed of the particle.

6B Breaking Down Angled Projections

1. A ball is thrown horizontally, with speed $20 \mathrm{~ms}^{-1}$, from the top of a building of height 30 m . Find:
a) The time the ball takes to reach the ground
b) Write the initial velocity in vector form
c) A particle is projected with velocity $\boldsymbol{U}=(3 \boldsymbol{i}+5 \boldsymbol{j}) m s^{-1}$, where \boldsymbol{i} and \boldsymbol{j} are the unit vectors in the horizontal and vertical directions respectively.

Find the initial speed of the particle and its angle of projection.

6C Angled Projections

1. A particle P is projected from a point O on a horizontal plane with speed $28 \mathrm{~ms}^{-1}$, and with angle of elevation 30°. After projection, the particle moves freely under gravity until it strikes the plane at a point A.

Find:
a) The greatest height above the plane reached by P
b) The time of flight of P
c) The distance OA
2. A particle is projected from a point O with speed Vms^{-1} at an angle of elevation θ, where $\tan \theta=4 / 3$. The point O is 42.5 m above the horizontal plane. The particle strikes the plane 5 seconds after it is projected.
a) Show that $V=20 \mathrm{~ms}^{-1}$
b) Find the distance between O and A
3. A particle is projected from a point O with speed $35 \mathrm{~ms}^{-1}$ at an angle of elevation of 30°. The particle moves freely under gravity.

Find the length of time for which the particle is 15 m or more above 0
4. A ball is struck by a racket at a point A which is 2 m above horizontal ground. Immediately after being struck, the ball has velocity $(5 \mathbf{i}+8 \mathbf{j}) \mathrm{ms}^{-1}$, where \mathbf{i} and \mathbf{j} are unit vectors horizontally and vertically respectively.

After being struck, the ball travels freely under gravity until is strikes the ground at a point B, as shown. Find:
a) The greatest height above ground reached by the ball
b) The speed of the ball as it reaches B
c) The angle the velocity of the ball makes with the ground as the ball reaches B

6D Deriving Formulae

1. A particle is projected from a point on a horizontal plane with an initial velocity U at an angle θ above the horizontal, and moves freely under gravity until it hits the plane at point B. Given that the acceleration due to gravity is g, find expressions for:
a) The time of flight, T
b) The range, R, on the horizontal plane
2. A particle is projected from a point with speed u and an angle of elevation θ, and moves freely under gravity. When the particle has moved a horizontal distance x, its height above the point of projection is y.

Show that:

$$
y=x \tan \theta-\frac{g x^{2}}{2 u^{2}}\left(1+\tan ^{2} \theta\right)
$$

3. A particle is projected from a point A on a horizontal plane, with initial speed $28 \mathrm{~ms}^{-1}$ and an angle of elevation θ. The particle passes through a point B, which is 8 m above the plane and a horizontal distance of 32 m from A

Find the two possible values of θ, giving your answers to the nearest degree.
(Use the formula we have just calculated)

