6) Circles

6.1) Midpoints and perpendicular bisectors
6.2) Equation of a circle
6.3) Intersections of straight lines and circles
6.4) Use tangent and chord properties
6.5) Circles and triangles
6.1) Midpoints and perpendicular bisectors Chapter CONTENTS

Find the midpoint of the line segment between:
$(2,4)$ and $(8,8)$
$(-2,4)$ and $(-9,9)$

Find the midpoint of the line segment between:

$$
(2,-4) \text { and }(11,8)
$$ $(6.5,2)$

Your turn

Find the perpendicular bisector of $A(2,5)$ and $B(6,7)$

Find the perpendicular bisector of $A(2,5)$ and $B(6,7)$

$$
y=-2 x+14
$$

Your turn

Find the perpendicular bisector of $A(3,8)$ and $B(1,-2)$

Find the perpendicular bisector of $A(3,8)$ and $B(1,-4)$

$$
y=-\frac{1}{2} x+7
$$

A line segment $A B$ is the diameter of a circle with centre $(4,-5)$. If A has coordinates $(2,-1)$, what are the coordinates of B ?

A line segment $A B$ is the diameter of a circle with centre $(5,-4)$. If A has coordinates $(1,-2)$, what are the coordinates of B ?

$$
(9,-6)
$$

6.2) Equation of a circle

Write down the equation of the circle with centre $(6,7)$ and radius 2

Write down the equation of the circle with centre $(-6,7)$ and radius 3

Write down the equation of the circle with centre $(-6,-7)$ and radius 4

Write down the equation of the circle with centre $(6,-7)$ and radius 5

Write down the equation of the circle with centre $(4,5)$ and radius 9

$$
(x-4)^{2}+(y-5)^{2}=81
$$

Write down the equation of the circle with centre $(-4,5)$ and radius 8

$$
(x+4)^{2}+(y-5)^{2}=64
$$

Write down the equation of the circle with centre $(-4,-5)$ and radius 7

$$
(x+4)^{2}+(y+5)^{2}=49
$$

Write down the equation of the circle with centre $(4,-5)$ and radius 6

$$
(x-4)^{2}+(y+5)^{2}=36
$$

Write down the equation of the circle with centre $(0,0)$ and radius 3

Write down the equation of the circle with centre $(0,3)$ and radius 2

Write down the equation of the circle with centre $(-2,0)$ and radius $2 \sqrt{3}$

Write down the equation of the circle with centre $(0,0)$ and radius 5

$$
x^{2}+y^{2}=25
$$

Write down the equation of the circle with centre $(0,-5)$ and radius 4

$$
x^{2}+(y+5)^{2}=16
$$

Write down the equation of the circle with centre $(4,0)$ and radius $4 \sqrt{5}$

$$
(x-4)^{2}+y^{2}=80
$$

Your turn

A circle has equation $(x+5)^{2}+(y-2)^{2}=80$.
a) Write down the centre and radius
b) Show that the circle passes through $(-1,10)$

A circle has equation $(x-3)^{2}+(y+4)^{2}=20$.
a) Write down the centre and radius
b) Show that the circle passes through $(5,-8)$
a) Centre $(3,-4)$, radius $2 \sqrt{5}$
b) Shown via substitution

A line segment $A B$ is the diameter of a circle, where A and B have coordinates $(5,8)$ and $(-7,4)$ respectively. Determine the equation of the circle.

A line segment $A B$ is the diameter of a circle, where A and B have coordinates $(4,7)$ and $(-8,3)$ respectively. Determine the equation of the circle.

$$
(x+2)^{2}+(y-5)^{2}=40
$$

Your turn

Find the centre and radius of the circle with equation

$$
x^{2}+y^{2}+8 x-6 y-2=0
$$

Find the centre and radius of the circle with equation

$$
\begin{aligned}
& x^{2}+y^{2}-14 x+16 y-12=0 \\
& \quad \text { Centre }(7,-8), \text { radius } 5 \sqrt{5}
\end{aligned}
$$

Your turn

A circle has equation $x^{2}+y^{2}+6 x+4 y=k$, where k is a constant.
State the range of possible values of k

A circle has equation $x^{2}+y^{2}+10 x+8 y=k$, where k is a constant.
State the range of possible values of k $k>-41$

Your turn

The circle with equation $x^{2}+(y-k)^{2}=41$ passes through the point $(5,6)$. Find the two possible values of k

The circle with equation $(x-k)^{2}+y^{2}=45$
passes through the point $(4,3)$.
Find the two possible values of k

$$
k=-2, k=10
$$

6.3) Intersections of straight lines and circlesChapter CONTENTS

Your turn

Find the coordinates of the points where the line $y=x+4$ meets the circle $x^{2}+(y-3)^{2}=61$

Find the coordinates of the points where the line
$y=x+5$ meets the circle $x^{2}+(y-2)^{2}=29$

Your turn

Show that the line $y=x+4$ does not meet the circle $(x-3)^{2}+y^{2}=22$

Show that the line $y=x-7$ does not meet the circle $(x+2)^{2}+y^{2}=33$

Shown using discriminant.

Worked example

Your turn

The line with equation $y=k x$ intersects the circle with equation $x^{2}-8 x+y^{2}+12 y+32=0$ at two distinct points.
Find the range of possible values of k to 2 dp

The line with equation $y=k x$ intersects the circle with equation $x^{2}-4 x+y^{2}+10 y+23=0$ at two distinct points.
Find the range of possible values of k to 2 dp

$$
k=-0.87, k=10.87(2 \mathrm{dp})
$$

Your turn

Using an algebraic method, determine k such that the line $y=x+k$ touches the circle with equation $x^{2}+y^{2}=9$

Using an algebraic method, determine k such that the line $y=x+k$ touches the circle with equation $x^{2}+y^{2}=1$

$$
k= \pm \sqrt{2}
$$

Your turn

The line with equation $y=5 x+2$ meets the circle with equation $x^{2}+k x+y^{2}=6$ at exactly one point. Find the two possible values of k

The line with equation $y=4 x+3$ meets the circle with equation $x^{2}+k x+y^{2}=7$ at exactly one point. Find the two possible values of k

$$
k=-24 \pm 4 \sqrt{6}
$$

Your turn

The line with equation $y=4 x-3$ does not intersect the circle with equation $x^{2}+2 x+y^{2}=$ k.

Find the range of possible values of k.

The line with equation $y=3 x-2$ does not intersect the circle with equation $x^{2}+4 x+y^{2}=$ k.
Find the range of possible values of k.

$$
k<\frac{12}{5}
$$

6.4) Use tangent and chord properties Chapter CONTENTS

Your turn

Find the equation of the tangent to $x^{2}+y^{2}=25$ at the point $(3,4)$

Find the equation of the tangent to $x^{2}+y^{2}=25$ at the point $(4,3)$

$$
y=-\frac{4}{3} x+\frac{25}{3}
$$

Your turn

Find the equation of the tangent to $x^{2}+y^{2}=169$ at the point $(5,12)$

Find the equation of the tangent to $x^{2}+y^{2}=169$ at the point $(-5,12)$

$$
y=\frac{5}{12} x+\frac{169}{12}
$$

The circle C has equation

$$
(x-3)^{2}+(y-7)^{2}=100
$$

a) Verify the point $P(11,1)$ lies on C.
b) Find an equation of the tangent to C at the point P, giving your answer in the form $a x+b y+c=0$

The circle C has equation

$$
(x-2)^{2}+(y-6)^{2}=100
$$

a) Verify the point $P(10,0)$ lies on C.
b) Find an equation of the tangent to C at the point P, giving your answer in the form $a x+b y+c=0$
a) Verified using substitution
b) $4 x-3 y=40=0$

Worked example

Your turn

A circle C has equation

$$
(x-4)^{2}+(y+4)^{2}=10
$$

The line l is a tangent to the circle and has gradient -3 . Find two possible equations for l, giving your answers in the form $y=m x+$ c.

A circle C has equation

$$
(x-5)^{2}+(y+3)^{2}=10
$$

The line l is a tangent to the circle and has gradient -3 . Find two possible equations for l, giving your answers in the form $y=m x+$ c.

$$
y=-3 x+2 \text { and } y=-3 x+22
$$

Your turn

The point P has coordinates $(-8,-2)$ and the point Q has coordinates $(2,-6)$.
M is the midpoint of the line segment $P Q$
a) Find an equation for l.
b) Given that the y-coordinate of C is -9: i) show that the x-coordinate of C is -5 . ii) find an equation of the circle.

The point P has coordinates $(-7,-1)$ and the point Q has coordinates $(3,-5)$.
M is the midpoint of the line segment $P Q$
a) Find an equation for l.
b) Given that the y-coordinate of C is -8 :
i) show that the x-coordinate of C is -4 .
ii) find an equation of the circle.
a) $y=\frac{5}{2} x+2$
b) i) Shown
ii) $(x+4)^{2}+(y+8)^{2}=58$

The line with equation $4 x+y-5=0$ is a tangent to the circle with equation $(x-3)^{2}+(y-p)^{2}=2$
Find the two possible values of p

The line with equation $4 x+y-3=0$ is a tangent to the circle with equation
$(x-2)^{2}+(y-p)^{2}=5$.
Find the two possible values of p

$$
p=3 \pm \sqrt{19}
$$

Your turn

A circle has centre $C(5,3)$, and passes through the point $P(2,6)$.
Find the equation of the tangent of the circle at the point P, giving your equation in the form $a x+b y+c=0$ where a, b, c are integers..

A circle has centre $C(3,5)$, and passes through the point $P(6,9)$.
Find the equation of the tangent of the circle at the point P, giving your equation in the form $a x+b y+c=0$ where a, b, c are integers..

$$
3 x+4 y-54=0
$$

A circle passes through the points $A(0,0)$ and $B(2,8)$.
The centre of the circle has x value -2 . Determine the equation of the circle.

A circle passes through the points $A(0,0)$ and $B(4,2)$.
The centre of the circle has x value -1 .
Determine the equation of the circle.

$$
(x+1)^{2}+(y-7)^{2}=50
$$

6.5) Circles and triangles

The points $A(-1,8), B(-5,-4), C(-9,4)$ lie on a circle.
a) Show that $A B$ is a diameter of the circle.
b) Hence find the equation of the circle

The points $A(-8,1), B(4,5), C(-4,9)$ lie on a circle.
a) Show that $A B$ is a diameter of the circle.
b) Hence find the equation of the circle
a) Shown
b) $(x+2)^{2}+(y-3)^{2}=40$

Your turn

The points $A(0,2), B(2,0), C(8,18)$ lie on the circumference of a circle.
Determine the equation of the circle.

The points $A(3,16), B(11,12), C(-7,6)$ lie on the circumference of a circle.
Determine the equation of the circle.

$$
(x-3)^{2}+(y-6)^{2}=100
$$

