6) Circles

- 6.1) Midpoints and perpendicular bisectors
- 6.2) Equation of a circle
- 6.3) Intersections of straight lines and circles
- 6.4) Use tangent and chord properties
- 6.5) Circles and triangles

6.1) Midpoints and perpendicular bisectors Chapter CONTENTS

Worked example	Your turn
Find the midpoint of the line segment between:	Find the midpoint of the line segment between:
(2, 4) and (8, 8)	(2, -4) and (11, 8)
	(6.5, 2)
(-2, 4) and $(-9, 9)$	

Worked example	Your turn
Find the perpendicular bisector of $A(2,5)$ and $B(6,7)$	Find the perpendicular bisector of $A(2,5)$ and $B(6,7)$
	y = -2x + 14

Worked example	Your turn
Find the perpendicular bisector of A (3,8) and $B(1,-2)$	Find the perpendicular bisector of A (3,8) and B(1,-4) $y = -\frac{1}{2}x + 7$

Worked example	Your turn
A line segment AB is the diameter of a circle with centre $(4, -5)$. If A has coordinates $(2, -1)$, what are the coordinates of B ?	A line segment AB is the diameter of a circle with centre $(5, -4)$. If A has coordinates $(1, -2)$, what are the coordinates of B ?
	(9, -6)

6.2) Equation of a circle

Chapter CONTENTS

Worked example	Your turn
Write down the equation of the circle with centre (6, 7) and radius 2	Write down the equation of the circle with centre (4, 5) and radius 9
	$(x-4)^2 + (y-5)^2 = 81$
Write down the equation of the circle with centre $(-6, 7)$ and radius 3	Write down the equation of the circle with centre $(-4, 5)$ and radius 8
	$(x+4)^2 + (y-5)^2 = 64$
Write down the equation of the circle with centre $(-6, -7)$ and radius 4	Write down the equation of the circle with centre $(-4, -5)$ and radius 7
	$(x+4)^2 + (y+5)^2 = 49$
Write down the equation of the circle with centre $(6, -7)$ and radius 5	Write down the equation of the circle with centre $(4, -5)$ and radius 6
	$(x-4)^2 + (y+5)^2 = 36$

Worked example	Your turn
Write down the equation of the circle with centre $(0, 0)$ and radius 3	Write down the equation of the circle with centre $(0, 0)$ and radius 5
	$x^2 + y^2 = 25$
Write down the equation of the circle with centre $(0, 3)$ and radius 2	Write down the equation of the circle with centre $(0, -5)$ and radius 4
	$x^2 + (y+5)^2 = 16$
Write down the equation of the circle with centre $(-2, 0)$ and radius $2\sqrt{3}$	Write down the equation of the circle with centre (4, 0) and radius $4\sqrt{5}$
	$(x-4)^2 + y^2 = 80$

Worked example	Your turn
A circle has equation $(x + 5)^2 + (y - 2)^2 = 80$. a) Write down the centre and radius b) Show that the circle passes through $(-1, 10)$	A circle has equation $(x - 3)^2 + (y + 4)^2 = 20$. a) Write down the centre and radius b) Show that the circle passes through $(5, -8)$ a) Centre $(3, -4)$, radius $2\sqrt{5}$ b) Shown via substitution
b) Show that the check passes through (-1,10)	a) Centre (3, -4), radius $2\sqrt{5}$ b) Shown via substitution

Worked example	Your turn
A line segment AB is the diameter of a circle, where A and B have coordinates (5,8) and (-7,4) respectively. Determine the equation of the circle.	A line segment <i>AB</i> is the diameter of a circle, where <i>A</i> and <i>B</i> have coordinates (4,7) and (-8,3) respectively. Determine the equation of the circle. $(x + 2)^2 + (y - 5)^2 = 40$

Worked example	Your turn
Find the centre and radius of the circle with	Find the centre and radius of the circle with
$x^2 + y^2 + 8x - 6y - 2 = 0$	$x^{2} + y^{2} - 14x + 16y - 12 = 0$ Centre (7, -8), radius $5\sqrt{5}$

Worked example	Your turn
A circle has equation $x^2 + y^2 + 6x + 4y = k$, where k is a constant. State the range of possible values of k	A circle has equation $x^2 + y^2 + 10x + 8y = k$, where k is a constant. State the range of possible values of k k > -41

Worked example	Your turn
Worked example The circle with equation $x^2 + (y - k)^2 = 41$ passes through the point (5, 6). Find the two possible values of k	Your turn The circle with equation $(x - k)^2 + y^2 = 45$ passes through the point (4, 3). Find the two possible values of k k = -2, k = 10

6.3) Intersections of straight lines and circles^{Chapter CONTENTS}

Worked example	Your turn
Find the coordinates of the points where the line $y = x + 4$ meets the circle $x^2 + (y - 3)^2 = 61$	Find the coordinates of the points where the line $y = x + 5$ meets the circle $x^2 + (y - 2)^2 = 29$
	(-5,0) and (2,7)

Worked example	Your turn
Show that the line $y = x + 4$ does not meet the circle $(x - 3)^2 + y^2 = 22$	Show that the line $y = x - 7$ does not meet the circle $(x + 2)^2 + y^2 = 33$
	Shown using discriminant.

Worked example	Your turn
The line with equation $y = kx$ intersects the circle with equation $x^2 - 8x + y^2 + 12y + 32 = 0$ at two distinct points. Find the range of possible values of k to 2 dp	The line with equation $y = kx$ intersects the circle with equation $x^2 - 4x + y^2 + 10y + 23 = 0$ at two distinct points. Find the range of possible values of k to 2 dp
	k = -0.87, k = 10.87 (2 dp)

Worked example	Your turn
Using an algebraic method, determine k such that the line $y = x + k$ touches the circle with equation $x^2 + y^2 = 9$	Using an algebraic method, determine k such that the line $y = x + k$ touches the circle with equation $x^2 + y^2 = 1$
	$k = \pm \sqrt{2}$

Worked example	Your turn
The line with equation $y = 5x + 2$ meets the circle with equation $x^2 + kx + y^2 = 6$ at exactly one point. Find the two possible values of k	The line with equation $y = 4x + 3$ meets the circle with equation $x^2 + kx + y^2 = 7$ at exactly one point. Find the two possible values of k
	$k = -24 \pm 4\sqrt{6}$

Worked example	Your turn
The line with equation $y = 4x - 3$ does not intersect the circle with equation $x^2 + 2x + y^2 = k$. Find the range of possible values of k .	The line with equation $y = 3x - 2$ does not intersect the circle with equation $x^2 + 4x + y^2 = k$. Find the range of possible values of k .
	$k < \frac{12}{5}$

6.4) Use tangent and chord properties Chapter CONTENTS

Worked example	Your turn
Find the equation of the tangent to $x^2 + y^2 = 25$ at the point (3, 4)	Find the equation of the tangent to $x^2 + y^2 = 25$ at the point (4, 3) $y = -\frac{4}{3}x + \frac{25}{3}$

Worked example	Your turn
Find the equation of the tangent to $x^2 + y^2 = 169$ at the point (5, 12)	Find the equation of the tangent to $x^2 + y^2 = 169$ at the point (-5, 12) $y = \frac{5}{12}x + \frac{169}{12}$

Worked example	Your turn
 The circle <i>C</i> has equation (x - 3)² + (y - 7)² = 100 a) Verify the point <i>P</i>(11,1) lies on <i>C</i>. b) Find an equation of the tangent to <i>C</i> at the point <i>P</i>, giving your answer in the form ax + by + c = 0 	The circle <i>C</i> has equation $(x - 2)^2 + (y - 6)^2 = 100$ a) Verify the point <i>P</i> (10,0) lies on <i>C</i> . b) Find an equation of the tangent to <i>C</i> at the point <i>P</i> , giving your answer in the form $ax + by + c = 0$ a) Verified using substitution b) $4x - 3y = 40 = 0$

Worked example	Your turn
A circle <i>C</i> has equation $(x - 4)^2 + (y + 4)^2 = 10$ The line <i>l</i> is a tangent to the circle and has gradient -3. Find two possible equations for <i>l</i> , giving your answers in the form $y = mx + c$.	A circle <i>C</i> has equation $(x-5)^2 + (y+3)^2 = 10$ The line <i>l</i> is a tangent to the circle and has gradient -3. Find two possible equations for <i>l</i> , giving your answers in the form $y = mx + c$. y = -3x + 2 and $y = -3x + 22$

Worked example	Your turn
The line with equation $4x + y - 5 = 0$ is a tangent to the circle with equation $(x - 3)^2 + (y - p)^2 = 2$. Find the two possible values of p	The line with equation $4x + y - 3 = 0$ is a tangent to the circle with equation $(x - 2)^2 + (y - p)^2 = 5$. Find the two possible values of p $p = 3 \pm \sqrt{19}$

Worked example	Your turn
A circle has centre $C(5,3)$, and passes through the point $P(2,6)$. Find the equation of the tangent of the circle at the point P , giving your equation in the form $ax + by + c = 0$ where a, b, c are integers	A circle has centre $C(3,5)$, and passes through the point $P(6,9)$. Find the equation of the tangent of the circle at the point P , giving your equation in the form $ax + by + c = 0$ where a, b, c are integers 3x + 4y - 54 = 0

Worked example	Your turn
A circle passes through the points $A(0,0)$ and $B(2,8)$. The centre of the circle has x value -2 . Determine the equation of the circle.	A circle passes through the points $A(0,0)$ and $B(4,2)$. The centre of the circle has x value -1 . Determine the equation of the circle.
	$(x+1)^2 + (y-7)^2 = 50$

6.5) Circles and triangles

Chapter CONTENTS

Worked example	Your turn
The points $A(-1,8)$, $B(-5, -4)$, $C(-9,4)$ lie on a circle. a) Show that AB is a diameter of the circle. b) Hence find the equation of the circle	The points $A(-8,1)$, $B(4,5)$, $C(-4,9)$ lie on a circle. a) Show that AB is a diameter of the circle. b) Hence find the equation of the circle a) Shown b) $(x + 2)^2 + (y - 3)^2 = 40$

Worked example	Your turn
The points $A(0,2)$, $B(2,0)$, $C(8,18)$ lie on the circumference of a circle. Determine the equation of the circle.	The points $A(3,16)$, $B(11,12)$, $C(-7,6)$ lie on the circumference of a circle. Determine the equation of the circle.
	$(x-3)^2 + (y-6)^2 = 100$