5.5) Modelling with straight lines

Worked example

Your turn

The A Level Maths mark, $y \%$, and GCSE Maths mark, $x \%$, is recorded for several students.
Assume the line goes through $(0,40)$ and $(60,80)$.
a) Write a linear model
b) Interpret the gradient and y-intercept in this context
c) Predict the A Level Maths mark of a student who got 100% for their GCSE Maths mark

The temperature y at different points on a mountain is recorded at different altitudes x.
Assume the line goes through $(0,70)$ and $(250,20)$.
a) Write a linear model
b) Interpret the gradient and y-intercept in this context
c) Predict at what altitude the temperature reaches $0^{\circ} \mathrm{F}$

a) $y=0.2 x+70$
b) The temperature at sea level is $70^{\circ} \mathrm{F}$. The temperature decreases by $0.2^{\circ} \mathrm{F}$ for each extra metre in altitude.
c) 350 m

Worked example

Your turn

In 2010 the population of rabbits in an area was 200. Locals projected that the number of rabbits would increase by 4 per year.
a) Write a linear model for the population, p, of rabbits t years after 2010
b) Write down a reason why this might not be a realistic model.

In 2000 there were 18500 people in a village. Planners projected that the number of people living in the village would increase by 350 per year.
a) Write a linear model for the population, p, of the village t years after 2000
b) Write down a reason why this might not be a realistic model.
a) $p=350 t+18500$
b) The population is unlikely to increase by the same amount each year. An exponential model would be more suitable

