5.3) Parallel and perpendicular lines

Your turn

Determine whether the pairs of lines are parallel, perpendicular or neither:

$$
\begin{gathered}
5 x-2 y-3=0 \\
y=\frac{5}{2} x
\end{gathered}
$$

$$
\begin{gathered}
5 x+3 y-21=0 \\
3 x-5 y+2=0
\end{gathered}
$$

Determine whether the pairs of lines are parallel, perpendicular or neither:

$$
\begin{aligned}
& 3 x-y-2=0 \\
& x+3 y-6=0
\end{aligned}
$$

Perpendicular

$$
\begin{gathered}
y=\frac{1}{2} x \\
2 x-y+4=0
\end{gathered}
$$

Neither parallel nor perpendicular

Your turn

The points A, B and C have coordinates $(0,12)$, $(-3,0)$ and $(0, c)$ respectively.
The line through points A and B is perpendicular to the line through points B and C. Find the value of c

The points A, B and C have coordinates $(0,6)$, $(-2,0)$ and $(0, c)$ respectively.
The line through points A and B is perpendicular to the line through points B and C.
Find the value of c

$$
x=-\frac{2}{3}
$$

Find the gradient of the perpendicular line to:
$y=2 x+3$
$y=2-3 x$
$y=\frac{2}{3} x+1$
$y=8-\frac{11}{5} x$

Find the general equation of the perpendicular line to:
$y=4 x$

$$
y=-\frac{1}{4} x+c
$$

$$
y=-2 x+4
$$

$$
y=\frac{1}{2} x+c
$$

$$
y=\frac{3}{4} x-5 \quad y=-\frac{4}{3} x+c
$$

$$
y=7-\frac{11}{3} x
$$

$$
y=\frac{3}{11} x+c
$$

Your turn

Find the equation of the line parallel to $y=3 x+5$ that passes through $(-2,5)$

Find the equation of the line parallel to $y=-\frac{1}{2} x-3$ that passes through $(-2,5)$

$$
y=-\frac{1}{2} x+4
$$

Find the equation of the line parallel to $y=-\frac{1}{3} x-4$ that passes through $(-2,5)$

Find the equation of the line perpendicular to $y=2 x-4$ that passes through $(-2,5)$

Find the equation of the line perpendicular to $y=3 x+2$ that passes through $(9,-7)$

$$
y=-\frac{1}{3} x-4
$$

Find the equation of the line perpendicular to $y=4 x+5$ that passes through $(-2,5)$

Your turn

Find the equation of the line perpendicular to $y=\frac{1}{2} x-4$ that passes through $(-2,5)$

Find the equation of the line perpendicular to $y=-\frac{4}{3} x+3$ that passes through $(-12,-5)$

$$
y=\frac{3}{4} x+4
$$

Find the equation of the line perpendicular to $y=-\frac{2}{3} x+5$ that passes through $(-2,5)$

Your turn

Find the equation of the line perpendicular to $x+2 y=5$ which passes through the point $(3,7)$

Find the equation of the line perpendicular to $2 x+3 y=5$ which passes through the point $(4,7)$

$$
y=\frac{3}{2} x+1
$$

Your turn

Write down an equation of a line parallel to $y=3 x-4$ which passes through the origin.

Write down an equation of a line parallel to $y=-2 x+5$ which passes through the origin.

$$
y=-2 x
$$

Determine the coordinates of A

