Tangents and Normals

Remember how you found the gradient given equations in parametric form.

$$
\begin{gathered}
x=\cos t, y=\sin t \\
\frac{d y}{d x}=\frac{\left(\frac{d y}{d t}\right)}{\left(\frac{\boldsymbol{d} \boldsymbol{x}}{\boldsymbol{d} t}\right)}=\frac{\cos t}{-\sin t}=-\cot t
\end{gathered}
$$

In the same way for polar coordinates:

$$
\begin{gathered}
x=r \cos \theta \quad y=r \sin \theta \\
\frac{d y}{d x}=\frac{\left(\frac{\boldsymbol{d} \boldsymbol{y}}{\boldsymbol{d} \boldsymbol{\theta}}\right)}{\left(\frac{\boldsymbol{d} \boldsymbol{x}}{\boldsymbol{d} \boldsymbol{\theta}}\right)}
\end{gathered}
$$

We can find the gradient at any point by differentiating parametrically.

- If $\frac{d y}{d \theta}=0$ the tangent is parallel to the initial line
- If $\frac{d x}{d \theta}=0$ the tangent is perpendicular to the initial line.

Eaxmple

Find the coordinates of the points on $r=a(1+\cos \theta)$ where the tangents are parallel to the initial line $\theta=0$.

Test Your Understanding

The curve C has polar equation

$$
r=1+2 \cos \theta, \quad 0 \leq \theta \leq \frac{\pi}{2}
$$

At the point P on C, the tangent to C is parallel to the initial line.
Given that O is the pole, find the exact length of the line $O P$.

Example

Find the equations and the points of contact of the tangents to the curve

$$
r=a \sin 2 \theta, 0 \leq \theta \leq \frac{\pi}{2}
$$

that are (a) parallel to the initial line and (b) perpendicular to the initial line.

Proof of dimple vs egg

Prove that for $r=p+q \cos \theta$ we have a 'dimple' if $p<2 q$.

