5.3) Areas of sectors and segments

## Your turn

A circle, centre $O$, radius 5.2 cm has a minor sector $O A B$ where the arc $A B$ subtends an angle of 0.4 radians at the centre of the circle.
Find the area of the sector.

A circle, centre $O$, radius 5.2 cm has a minor sector $O A B$ where the arc $A B$ subtends an angle of 0.2 radians at the centre of the circle.
Find the area of the sector.

A circle, centre O, radius 5.2 cm has a minor sector $O A B$ where the arc $A B$ subtends an angle of 0.8 radians at the centre of the circle.
Find the area of the sector.
$10.816 \mathrm{~cm}^{2}$

## Your turn

A circle, centre O, radius 5.2 cm has a minor sector $O A B$ where the arc $A B$ subtends an angle of 0.4 radians at the centre of the circle. A segment is enclosed by a chord $A B$ and the arc $A B$.
Find the area of the segment.

A circle, centre O, radius 5.2 cm has a minor sector $O A B$ where the arc $A B$ subtends an angle of 0.8 radians at the centre of the circle.
A segment is enclosed by a chord $A B$ and the arc AB.
Find the area of the segment.

$$
1.12 \mathrm{~cm}^{2}(3 \mathrm{sf})
$$

## Your turn

The area of the minor sector $A O B$ is $14.45 \mathrm{~cm}^{2}$. Given that $\angle A O B=0.4$ radians and O is the centre of the circle, calculate the length of the radius

The area of the minor sector $A O B$ is 28.9 $\mathrm{cm}^{2}$. Given that $\angle A O B=0.8$ radians and $O$ is the centre of the circle, calculate the length of the radius
8.5 cm

A sector of a circle of radius 110 m and perimeter 352 m .
Calculate the area of the sector

A sector of a circle of radius 110 m and perimeter 176 m .
Calculate the area of the sector
$1815 \mathrm{~m}^{2}$

## Your turn

OAB is a sector of a circle, centre O , radius 8 m .
The chord $A B$ is 10 m long. Find the area of the segment.
$O A B$ is a sector of a circle, centre $O$, radius $4 m$.
The chord $A B$ is 5 m long.
Find the area of the segment.

$$
3.00 m^{2}(3 \mathrm{sf})
$$

## Your turn

$A B$ is the diameter of a semicircle, centre $O$, radius $r \mathrm{~cm}$. C is a point on the semicircle. $\angle B O C=\theta$ radians. Given that the area of $\triangle \mathrm{AOC}$ is six times the segment enclosed by $C B$, show that $6 \theta-7 \sin \theta=0$
$A B$ is the diameter of a semicircle, centre $O$, radius $r \mathrm{~cm}$.
$C$ is a point on the semicircle.
$\angle \mathrm{BOC}=\theta$ radians.
Given that the area of $\triangle \mathrm{AOC}$ is three times the segment enclosed by $C B$, show that $3 \theta-4 \sin \theta=0$

## Your turn

$O A B$ is a sector of a circle, centre $O$, radius 18 cm and angle 0.35 radians.
C lies outside the sector.
$A C$ is a straight line, perpendicular to OA. $O B C$ is a straight line.
Find the area of the region bounded by the $\operatorname{arc} A B$ and the lines $A C$ and $B C$
$O A B$ is a sector of a circle, centre $O$, radius 9 cm and angle 0.7 radians.
C lies outside the sector.
$A C$ is a straight line, perpendicular to $O A$.
$O B C$ is a straight line.
Find the area of the region bounded by the arc $A B$ and the lines $A C$ and $B C$

$$
5.76 \mathrm{~cm}^{2}(3 \mathrm{sf})
$$

## Your turn

OPQ is a sector of a circle, centre O , radius 20 cm where $<\mathrm{POQ}=0.6$ radians.
The point $R$ is on $O Q$ such that the ratio $O R: R Q$ is 1:3
A region is bounded by the arc $P Q, Q R$ and a line RP.
a) Find the perimeter of the region
b) Find the area of the region
$O P Q$ is a sector of a circle, centre $O$, radius 10 cm where $<\mathrm{POQ}=0.3$ radians.
The point $R$ is on $O Q$ such that the ratio $O R: R Q$ is 1:3
A region is bounded by the arc $P Q, Q R$ and a line RP.
a) Find the perimeter of the region
b) Find the area of the region
a) $18.1 \mathrm{~cm}(3 \mathrm{sf})$
b) $11.3 \mathrm{~cm}^{2}(3 \mathrm{sf})$

